Skip to main content Accessibility help
×
Home

Long-term supplementation with selenate and selenomethionine: urinary excretion by New Zealand women

  • Marion F. Robinson (a1), Christine D. Thomson (a1), Christopher P. Jenkinson (a2), Gu Luzhen (a3) and Philip D Whanger (a4)...

Abstract

Thirty-six New Zealand women aged between 18 and 23 years received daily for 32 weeks, 200 µg Se as Se-enriched yeast (selenomethionine, SeMet), or brewer's yeast mixed with selenate, or no added Se (placebo) in a double-blind trial. Mean daily Se excretion increased with both supplements; the selenate group excreted more than the SeMet group, 123 v. 66 µg/d respectively at week 2, equivalent to 57 v. 27 % of the dose. Thereafter Se output increased for the SeMet group reaching a plateau at about 100 µg/d at week 16, when plasma Se had also plateaued at 190 ng/ml. The selenate group had reached an earlier plateau of 110 ng Se/ml at week 7. There was a close relationship between 24 h urine and plasma Se for the SeMet group but not for the selenate group. Renal plasma clearances showed two distinctly different responses; the clearance of 0·4 ml/min reached by the SeMet group at week 2 plateaued as plasma Se increased almost 2-fold; whereas for the selenate group the clearance varied between 0·8 and 1·1 ml/min whilst plasma Se remained almost constant at 110 ng/ml. Previous studies, also of 200 µgSe/d as Se-rich bread, in New Zealand (NZ) and elsewhere showed similar responses to Se-yeast; the selenite response was intermediate between selenate and Se-yeast (SeMet). The full significance of these studies awaits identification of Se components in plasma, glomerular filtrate and urine; meanwhile renal clearances serve as a pointer to changes in the distribution of Se-containing fractions in the plasma. Trimethylselenonium was detected in basal urines, and was a minor component in urines of supplemented NZ subjects at about 1 % of the total Se.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Long-term supplementation with selenate and selenomethionine: urinary excretion by New Zealand women
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Long-term supplementation with selenate and selenomethionine: urinary excretion by New Zealand women
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Long-term supplementation with selenate and selenomethionine: urinary excretion by New Zealand women
      Available formats
      ×

Copyright

References

Hide All
Alfthan, G., Aro, A., Arvilommi, H. & Huttunen, J. K. (1991). Selenium metabolism and platelet glutathione peroxidase activity in healthy Finnish men: effects of selenium yeast, selenite, and selenate. American Journal of Clinical Nutrition 53, 120125.
Alaejos, M. S. & Romero, C. D. (1993). Urinary selenium concentrations. Clinical Chemistry 39, 20402052.
Beilstein, M. A. & Whanger, P. D. (1986). Deposition of dietary organic and inorganic selenium in rat erythrocyte proteins. Journal of Nutrition 116, 17011710.
Bingham, S. A. & Cummings, J. H. (1985). The use of creatinine output as a check on the completeness of 24-hour urine collections. Human Nutrition: Clinical Nutrition 39C, 343353.
Brown, M. W. & Watkinson, J. H. (1977). An automated fluorimetric method for the determination of nanogram quantities of selenium. Analytica Chimica Acta 89, 2935.
Burk, R. F. (1974). In vivo 75Se binding to human plasma proteins after administration of 75SeO⅔-. Biochimica et Biophysica Acta 372, 255265.
Burk, R. F. (1976). Selenium in man. In Trace Elements in Human Health and Disease, vol. 2, pp. 105133. London: Academic Press.
Burk, R. F. (1986). Selenium and cancer: meaning of serum selenium levels. Journal of Nutrition 116, 15841586.
Butler, J. A., Thomson, C. D., Whanger, P. D. & Robinson, M. F. (1991). Selenium distribution in blood fractions of New Zealand women taking organic or inorganic selenium. American Journal of Clinical Nutrition 53, 748754.
Clarke, J. T. (1961). Colorimetric determination and distribution of urinary creatinine and creatine. Clinical Chemistry 7, 271283.
Janghorbani, M., Martin, R. F., Kasper, L. J., Sun, X. F. & Young, V. R. (1990). The selenite-exchangeable metabolic pool in humans: a new concept for the assessment of selenium status. American Journal of Clinical Nutrition 51, 670677.
Koushanpour, E. & Kriz, W. (1986). Renal Physiology, 2nd ed. New York: Springer-Verlag.
Kraus, R. J., Foster, S. J. & Ganther, H. E. (1985). Analysis of trimethylselenonium in urine by high performance liquid chromatography. Analytical Biochemistry 147, 432436.
Levander, O. A., Alfthan, G., Arvilommi, H., Gref, G. C., Huttunen, J. K., Kataja, M. K., Koivistoinen, P. & Pikkarainen, J. (1983). Bioavailability of selenium to Finnish men as assessed by platelet glutathione peroxidase activity and other blood parameters. American Journal of Clinical Nutrition 37, 887897.
Levander, O. A. & Burk, R. F. (1990). Selenium. In Present Knowledge of Nutrition, 6th ed., pp. 268273 [Brown, M. L. editor]. Washington DC: ILSI, Nutrition Foundation.
Luo, X., Wei, H., Yang, C., Xing, J., Qiao, C., Feng, Y., Liu, J., Liu, Z., Wu, Q., Liu, Y., Stoecker, B. J., Spallholz, J. E. & Yang, S. P. (1985). Selenium intake and metabolic balance of 10 men from a low selenium area of China. American Journal of Clinical Nutrition 42, 3137.
Meltzer, H. M., Norheim, G., Bibow, K., Myhre, K. & Holm, H. (1990). The form of selenium determines the response to supplementation in a selenium replete population. European Journal of Clinical Nutrition 44, 497508.
Meltzer, H. M., Norheim, G., Loken, E. B. & Holm, H. (1992). Supplementation with wheat selenium induces a dose-dependent response in serum and urine of a Se-replete population. British Journal of Nutrition 67, 287294.
Mills, G. & Hocken, A. G. (1986). Microalbuminuria in a diabetic population. New Zealand Medical Journal 99, 1719.
Nahapetian, A. T., Young, V. R. & Janghorbani, M. (1984). Measurement of trimethylselenonium ion in human urine. Analytical Biochemistry 140, 5662.
Oster, O. & Prellwitz, W. (1990). The renal excretion of selenium. Biological Trace Element Research 24, 119146.
Robberecht, H. J. & Deelstra, H. A. (1984). Selenium in human urine: determination, speciation and concentration levels. Talanta 31, 497508.
Robinson, J. R., Robinson, M. F., Levander, O. A. & Thomson, C. D. (1985). Urinary excretion of selenium by New Zealand and North American human subjects on differing intakes. American Journal of Clinical Nutrition 41, 10231031.
Robinson, M. F. (1988). The New Zealand selenium experience. American Journal of Clinical Nutrition 48, 521534.
Robinson, M. F., Jenkinson, C. P., Luzhen, G., Thomson, C. D. & Whanger, P. D. (1989). Urinary excretion of selenium (Se) and trimethylselenonium (TMSe) by New Zealand women during long-term supplementation with selenate or selenomethionine (SeMet). In Selenium in Biology and Medicine, pp. 250253 [Wendel, A. editor]. Heidelberg: Springer-Verlag.
Sandholm, M. (1973). The initial fate of a trace amount of intravenously administered selenite. Acta Pharmacologica et Toxicologica 33, 15.
Sun, X. A., Ting, B. T. G. & Janghorbani, M. (1987). Excretion of trimethylselenonium ion in human urine. Analytical Biochemistry 167, 304311.
Sunde, R. A. (1990). Molecular biology of selenoproteins. Annual Review of Nutrition 10, 451474.
Thomson, C. D., Burton, C. E. & Robinson, M. F. (1978). On supplementing the selenium intake of New Zealanders: 1. Short experiments with large doses of selenite or selenomethionine. British Journal of Nutrition 39, 579587.
Thomson, C. D., Ong, L. K. & Robinson, M. F. (1985). Effects of supplementation with high-selenium wheat bread on selenium, glutathione peroxidase and related enzymes on blood components of New Zealand residents. American Journal of Clinical Nutrition 41, 10151022.
Thomson, C. D. & Robinson, M. F. (1986). Urinary and faecal excretions and absorption of a large supplement of selenium: superiority of selenate over selenite. American Journal of Clinical Nutrition 44, 659663.
Thomson, C. D., Robinson, M. F., Butler, J. A. & Whanger, P. D. (1993). Long-term supplementation with selenate and selenomethionine: selenium and glutathione peroxidasse (EC 1.11.1.9) in blood components of New Zealand women. British Journal of Nutrition 69, 577588.
Thomson, C. D., Robinson, M. F., Campbell, D. R. & Rea, H. M. (1982). Effect of a prolonged supplementation with daily supplements of selenomethionine and sodium selenite on glutathione peroxidase activity on blood of New Zealand residents. American Journal of Clinical Nutrition 36, 2431.
Thomson, C. D., Steven, S. M., Van Rij, A. M., Wade, C. R. & Robinson, M. F. (1988). Selenium and vitamin E supplementation: activities of glutathione peroxidase in human tissue. American Journal of Clinical Nutrition 48, 316323.
Van Der Torre, H. W., Van Dokkum, W., Schaafsma, G., Wedel, M. & Ockhuizen, T. (1991). Effect of various levels of selenium in wheat and meat on blood Se status indices and on Se balance in Dutch men. British Journal of Nutrition 65, 6980.
Varo, P., Alfthan, G., Ekholm, P., Aro, A. & Koivistoinen, P. (1988). Selenium intake and serum selenium in Finland: effects of soil fertilization with selenium. American Journal of Clinical Nutrition 48, 324329.
Webster, J. & Garrow, J. S. (1985). Creatinine excretion over 24 hours as a measure of body composition or of completeness of urine collection. Human Nutrition: Clinical Nutrition 39C, 101106.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed