Skip to main content Accessibility help
×
Home

Lactobacillus gasseri suppresses Th17 pro-inflammatory response and attenuates allergen-induced airway inflammation in a mouse model of allergic asthma

  • Ren-Long Jan (a1) (a2), Kung-Chih Yeh (a3), Miao-Hsi Hsieh (a3), Yen-Lin Lin (a4), Hui-Fang Kao (a4), Pi-Hsueh Li (a5), Yuh-Shin Chang (a6) and Jiu-Yao Wang (a2) (a3) (a4) (a6)...

Abstract

Probiotics are normal inhabitants of the gastrointestinal tract of man and are widely considered to exert a number of beneficial effects in many diseases. But the mechanism by which they modulate the immune system is poorly understood. The present study was planned to explore the anti-allergic effect of Lactobacillus gasseri on a mouse model of allergic asthma. Dermatophoides pteronyssinus (Der p) sensitised and challenged BALB/c mice were orally administered via oral administration with three different doses of L. gasseri (low, 1 × 106 colony-forming units (CFU); medium, 2 × 106 CFU; high, 4 × 106 CFU), in 700 μl of PBS daily, starting from 2 weeks before Der p sensitisation for 4 weeks. After the allergen challenge, airway responsiveness to methacholine, influx of inflammatory cells to the lung, and cytokine levels in bronchoalveolar lavage (BAL) fluids and splenocytes culture were assessed. Our results showed that oral administration of a high dose of L. gasseri (4 × 106 CFU) decreased airway responsiveness to methacholine, attenuated the influx of inflammatory cells to the airways and reduced the levels of TNF-α, thymus and activation-regulated chemokine (TARC) and IL-17A in BAL fluids of Der p-sensitised and -challenged mice. Moreover, L. gasseri decreased IL-17A production in transforming growth factor-α and IL-6 stimulated splenocytes and cell numbers of IL-17 producing alveolar macrophages in L. gasseri-treated mice as compared to non-treated, Der p-sensitised and -challenged mice. In conclusion, oral administration with L. gasseri can attenuate major characteristics of allergen-induced airway inflammation and IL-17 pro-inflammatory immune response in a mouse model of allergic asthma, which may have clinical implication in the preventive or therapeutic potential in allergic asthma.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Lactobacillus gasseri suppresses Th17 pro-inflammatory response and attenuates allergen-induced airway inflammation in a mouse model of allergic asthma
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Lactobacillus gasseri suppresses Th17 pro-inflammatory response and attenuates allergen-induced airway inflammation in a mouse model of allergic asthma
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Lactobacillus gasseri suppresses Th17 pro-inflammatory response and attenuates allergen-induced airway inflammation in a mouse model of allergic asthma
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor J.-Y. Wang, fax +886 2753083, email a122@mail.ncku.edu.tw

References

Hide All
1Strachan, DP (1989) Hay fever, hygiene, and household size. Br Med J 299, 12591260.
2Bjorksten, B, Naaber, P, Sepp, E, et al. (1999) The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin Exp Allergy 29, 342346.
3Mowat, AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3, 331341.
4Rakoff-Nahoum, S, Paglino, J, Eslami-Varzaneh, F, et al. (2004) Recognition of commensal microfloraby toll-like receptors is required for intestinal homeostasis. Cell 118, 229241.
5Bjorksten, B, Sepp, E, Julge, K, et al. (2001) Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol 108, 516520.
6Kirjavainen, PV, Arvola, T, Salminen, SJ, et al. (2002) Aberrant composition of gut microbiota of allergic infants: a target of bifidobacterial therapy at weaning? Gut 51, 5155.
7Cross, ML, Stevenson, LM & Gill, HS (2001) Anti-allergy properties of fermented foods: an important immunoregulatory mechanism of lactic acid bacteria? Int Immunopharmacol 1, 891901.
8Matsuzaki, T, Yamazaki, R, Hashimoto, S, et al. (1998) The effect of oral feeding of Lactobacillus casei strain Shirota on immunoglobulin E production in mice. J Dairy Sci 81, 4853.
9Murosaki, S, Yamamoto, Y, Ito, K, et al. (1998) Heat-killed Lactobacillus plantarum L-137 suppresses naturally fed antigen-specific IgE production by stimulation of IL-12 production in mice. J Allergy Clin Immunol 102, 5764.
10Kalliomaki, M, Salminen, S, Arvilommi, H, et al. (2001) Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357, 10761079.
11Kalliomaki, M, Salminen, S, Poussa, T, et al. (2003) Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet 361, 18691871.
12Rosenfeldt, V, Benfeldt, E, Nielsen, SD, et al. (2003) Effect of probiotic lactobacillus strains in children with atopic dermatitis. J Allergy Clin Immunol 111, 389395.
13Chen, YS, Lin, YL, Jan, RL, et al. (2010) Randomized placebo-controlled trial of lactobacillus on asthmatic children with allergic rhinitis. Pediatr Pulmol 45, 11111120.
14Hellings, PW, Kasran, A & Liu, Z (2003) Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am J Respir Cell Mol Biol 28, 4250.
15Oda, N, Canelos, PB, Essayan, DM, et al. (2005) Interleukin-17F induces pulmonary neutrophilia and amplifies antigen-induced allergic response. Am J Respir Crit Care Med 171, 1218.
16Molet, S, Hamid, Q, Davoine, F, et al. (2001) IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 108, 430438.
17Chakir, J, Shannon, J, Molet, S, et al. (2003) Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-β, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol 111, 12931298.
18Wang, JY, Shyur, SD, Wang, WH, et al. (2009) The polymorphisms of interleukin 17A (IL-17A) gene and its association with pediatric asthma in Taiwanese population. Allergy 64, 10561060.
19Dong, C (2008) Th17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8, 337348.
20Wakashin, H, Hirose, K, Maezawa, Y, et al. (2008) IL-23 and Th17 cells enhance Th2 cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med 178, 10231032.
21Mohamadzadeh, M, Olson, S, Kalina, WV, et al. (2005) Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc Natl Acad Sci U S A 102, 28802885.
22Hisbergues, M, Magi, M, Rigaux, P, et al. (2007) In vivo and in vitro immunomodulation of Der p 1 allergen-specific response by Lactobacillus plantarum bacteria. Clin Exp Allergy 37, 12861295.
23Foligne, B, Zoumpopoulou, G, Dewulf, J, et al. (2007) A key role of dendritic cells in probiotic functionality. PLoS ONE 2, e313e321.
24Di Giacinto, C, Marinaro, M, Sanchez, M, et al. (2005) Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells. J Immunol 174, 32373246.
25Song, C, Luo, L, Lei, Z, et al. (2008) IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. J Immunol 181, 61176124.
26Oboki, K, Ohno, T, Saito, H, et al. (2008) Th17 and allergy. Allergol Int 57, 121134.
27Schnyder-Candrian, S, Togbe, D, Couillin, I, et al. (2006) Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 203, 27152725.
28Nakae, S, Komiyama, Y, Nambu, A, et al. (2002) Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375387.
29Molet, S, Hamid, Q, Davoine, F, et al. (2001) IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 108, 430438.
30Barczyk, A, Pierzchala, W & Sozanska, E (2003) Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respir Med 97, 726733.
31Hellings, PW, Kasran, A, Liu, Z, et al. (2003) Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am J Respir Cell Mol Biol 28, 4250.
32Schmidt-Weber, CB, Akdis, M & Akdis, CA (2007) TH17 cells in the big picture of immunology. J Allergy Clin Immunol 120, 247254.
33Feleszko, W, Jaworska, J, Rha, RD, et al. (2007) Probiotic induced suppression of allergic sensitization and airway inflammation is associated with an increase of T regulatory-dependent mechanisms in a murine model of asthma. Clin Exp Allergy 37, 498505.
34Blumer, N, Sel, S, Virna, S, et al. (2007) Perinatal maternal application of Lactobacillus rhamnosus GG suppresses allergic airway inflammation in mouse offspring. Clin Exp Allergy 37, 348357.
35Forsythe, P, Inman, MD & Bienenstock, J (2007) Oral treatment with live Lactobacillus reuteri inhibits the allergic airway response in mice. Am J Respir Crit Care Med 175, 561569.
36Reid, G, Jass, J, Sebulsky, MT, et al. (2003) Potential uses of probiotics in clinical practice. Clin Microbiol Rev 16, 658672.
37Matsuzaki, T, Hashimoto, S & Yokokura, T (1996) Effects on antitumor activity and cytokine production in the thoracic cavity by intrapleural administration of Lactobacillus casei in tumor-bearing mice. Med Microbiol Immunol (Berl) 185, 157161.
38Mimura, T, Rizzello, F, Helwig, U, et al. (2004) Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut 53, 108114.
39Bibiloni, R, Fedorak, RN, Tannock, GW, et al. (2005) VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol 100, 15391546.
40Soa, JS, Lee, CG, Kwon, HK, et al. (2008) Lactobacillus casei potentiates induction of oral tolerance in experimental arthritis. Mol Immunol 46, 172180.
41Ivanov, Frutos II, Rde, L, Manel, N, et al. (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337349.
42Cho, JS, Choi, YJ & Chung, DK (2000) Expression of Clostridium thermocellum endoglucanase gene in Lactobacillus gasseri and Lactobacillus johnsonii and characterization of the genetically modified probiotic lactobacilli. Curr Microbiol 40, 257263.
43Karimi, K, Inman, MD, Bienenstock, J, et al. (2009) Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am J Respir Crit Care Med 179, 186193.
44Atarashi, K, Nishimura, J, Shima, T, et al. (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455, 808812.
45Zaph, C, Du, Y, Saenz, SA, et al. (2008) Commensal dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J Exp Med 205, 21912198.
46Hall, JA, Bouladoux, N, Sun, CM, et al. (2008) Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29, 637649.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed