Skip to main content Accessibility help
×
Home

Keto analogue and amino acid supplementation affects the ammonaemia response during exercise under ketogenic conditions

  • Eduardo Seixas Prado (a1) (a2) (a3) (a4), José Melquiades de Rezende Neto (a3), Rosemeire Dantas de Almeida (a1) (a2) (a3), Marcelia Garcez Dória de Melo (a5) and Luiz-Claudio Cameron (a1) (a2) (a6)...

Abstract

Hyperammonaemia is related to both central and peripheral fatigue during exercise. Hyperammonaemia in response to exercise can be reduced through supplementation with either amino acids or combined keto analogues and amino acids (KAAA). In the present study, we determined the effect of short-term KAAA supplementation on ammonia production in subjects eating a low-carbohydrate diet who exercise. A total of thirteen male cyclists eating a ketogenic diet for 3 d were divided into two groups receiving either KAAA (KEx) or lactose (control group; LEx) supplements. Athletes cycled indoors for 2 h, and blood samples were obtained at rest, during exercise and over the course of 1 h during the recovery period. Exercise-induced ammonaemia increased to a maximum of 35 % in the control group, but no significant increase was observed in the supplemented group. Both groups had a significant increase (approximately 35 %) in uraemia in response to exercise. The resting urate levels of the two groups were equivalent and remained statistically unchanged in the KEx group after 90 min of exercise; an earlier increase was observed in the LEx group. Glucose levels did not change, either during the trial time or between the groups. An increase in lactate levels was observed during the first 30 min of exercise in both groups, but there was no difference between the groups. The present results suggest that the acute use of KAAA diminishes exercise-induced hyperammonaemia.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Keto analogue and amino acid supplementation affects the ammonaemia response during exercise under ketogenic conditions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Keto analogue and amino acid supplementation affects the ammonaemia response during exercise under ketogenic conditions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Keto analogue and amino acid supplementation affects the ammonaemia response during exercise under ketogenic conditions
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor L.-C. Cameron, email cameron@unirio.br

References

Hide All
1Felipo, V & Butterworth, RF (2002) Neurobiology of ammonia. Prog Neurobiol 67, 259279.
2Wilkinson, DJ, Smeeton, NJ & Watt, PW (2010) Ammonia metabolism, the brain and fatigue; revisiting the link. Prog Neurobiol 91, 200219.
3Munoz, MD, Monfort, P, Gaztelu, JM, et al. (2000) Hyperammonemia impairs NMDA receptor-dependent long-term potentiation in the CA1 of rat hippocampus in vitro. Neurochem Res 25, 437441.
4Nybo, L (2010) CNS fatigue provoked by prolonged exercise in the heat. Front Biosci (Elite Ed) 2, 779792.
5Wagenmakers, AJ, Coakley, JH & Edwards, RH (1990) Metabolism of branched chain amino acids and ammonia during exercise: clues from McArdle's disease. Int J Sports Med 11, Suppl. 2, S101S113.
6Wagenmakers, AJ, Beckers, EJ, Brouns, F, et al. (1991) Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise. Am J Physiol 260, E883E890.
7Carvalho-Peixoto, J, Alves, RC & Cameron, LC (2007) Glutamine and carbohydrate supplements reduce ammonemia increase during endurance field exercise. Appl Physiol Nutr Metab 32, 11861190.
8Bassini-Cameron, A, Monteiro, AN, Gomes, A, et al. (2008) Glutamine protects against increases in blood ammonia in football players in an exercise intensity-dependent way. Br J Sports Med 42, 260266.
9Graham, TE & MacLean, DA (1992) Ammonia and amino acid metabolism in human skeletal muscle during exercise. Can J Physiol Pharmacol 70, 132141.
10Banister, EW & Cameron, BJ (1990) Exercise-induced hyperammonemia: peripheral and central effects. Int J Sports Med 11, Suppl. 2, S129S142.
11Furst, P (1989) Amino acid metabolism in uremia. J Am Coll Nutr 8, 310323.
12Walser, M (1975) Nutritional effects of nitrogen-free analogues of essential amino acids. Life Sci 17, 10111020.
13Savica, V, Santoro, D, Ciolino, F, et al. (2005) Nutritional therapy in chronic kidney disease. Nutr Clin Care 8, 7076.
14van Hall, G, van der Vusse, GJ, Söderlund, K, et al. (1995) Deamination of amino acids as a source for ammonia production in human skeletal muscle during prolonged exercise. J Physiol 15, 251261.
15Snow, RJ, Carey, MF, Stathis, CG, et al. (2000) Effect of carbohydrate ingestion on ammonia metabolism during exercise in humans. J Appl Physiol 88, 15761580.
16Langfort, J, Czarnowski, D, Zendzian-Piotrowska, M, et al. (2004) Short-term low-carbohydrate diet dissociates lactate and ammonia thresholds in men. J Strength Cond Res 18, 260265.
17Westman, EC, Feinman, RD, Mavropoulos, JC, et al. (2007) Low-carbohydrate nutrition and metabolism. Am J Clin Nutr 86, 276284.
18Ogino, K, Kinugawa, T, Osaki, S, et al. (2000) Ammonia response to constant exercise: differences to the lactate response. Clin Exp Pharmacol Physiol 27, 612617.
19Wagenmakers, AJ (1998) Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exerc Sport Sci Rev 26, 287314.
20Shawcross, DL, Olde Damink, SW, Butterworth, RF, et al. (2005) Ammonia and hepatic encephalopathy: the more things change, the more they remain the same. Metab Brain Dis 20, 169179.
21Zwingmann, C, Chatauret, N, Leibfritz, D, et al. (2003) Selective increase of brain lactate synthesis in experimental acute liver failure: results of a [1H–13C] nuclear magnetic resonance study. Hepatology 37, 420428.
22Walser, M (1978) Principles of keto acid therapy in uremia. Am J Clin Nutr 31, 17561760.
23Sahlin, K, Tonkonogi, M & Söderlund, K (1999) Plasma hypoxanthine and ammonia in humans during prolonged exercise. Eur J Appl Physiol Occup Physiol 80, 417422.
24Hellsten, Y, Richter, EA, Kiens, B, et al. (1999) AMP deamination and purine exchange in human skeletal muscle during and after intense exercise. J Physiol 520, 909920.
25Dalton, RN & Chantler, C (1983) Metabolism of orally administered branched-chain alpha-keto acids. Kidney Int 15, S11S15.
26Almeida, RD, Prado, ES, Llosa, CD, et al. (2010) Acute supplementation with keto analogues and amino acids in rats during resistance exercise. Br J Nutr 104, 14381442.

Keywords

Keto analogue and amino acid supplementation affects the ammonaemia response during exercise under ketogenic conditions

  • Eduardo Seixas Prado (a1) (a2) (a3) (a4), José Melquiades de Rezende Neto (a3), Rosemeire Dantas de Almeida (a1) (a2) (a3), Marcelia Garcez Dória de Melo (a5) and Luiz-Claudio Cameron (a1) (a2) (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed