Skip to main content Accessibility help
×
Home

Inhibition of advanced glycation end-product formation on eye lens protein by rutin

  • P. Muthenna (a1), C. Akileshwari (a1), Megha Saraswat (a1) and G. Bhanuprakash Reddy (a1)

Abstract

Formation of advanced glycation end products (AGE) plays a key role in the several pathophysiologies associated with ageing and diabetes, such as arthritis, atherosclerosis, chronic renal insufficiency, Alzheimer's disease, nephropathy, neuropathy and cataract. This raises the possibility of inhibition of AGE formation as one of the approaches to prevent or arrest the progression of diabetic complications. Previously, we have reported that some common dietary sources such as fruits, vegetables, herbs and spices have the potential to inhibit AGE formation. Flavonoids are abundantly found in fruits, vegetables, herbs and spices, and rutin is one of the commonly found dietary flavonols. In the present study, we have demonstrated the antiglycating potential and mechanism of action of rutin using goat eye lens proteins as model proteins. Under in vitro conditions, rutin inhibited glycation as assessed by SDS-PAGE, AGE-fluorescence, boronate affinity chromatography and immunodetection of specific AGE. Further, we provided insight into the mechanism of inhibition of protein glycation that rutin not only scavenges free-radicals directly but also chelates the metal ions by forming complexes with them and thereby partly inhibiting post-Amadori formation. These findings indicate the potential of rutin to prevent and/or inhibit protein glycation and the prospects for controlling AGE-mediated diabetic pathological conditions in vivo.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Inhibition of advanced glycation end-product formation on eye lens protein by rutin
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Inhibition of advanced glycation end-product formation on eye lens protein by rutin
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Inhibition of advanced glycation end-product formation on eye lens protein by rutin
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr G. B. Reddy, fax +91 40 27019074, email geereddy@yahoo.com

References

Hide All
1 Sing, R, Barden, A, Mori, T, et al. (2001) Advanced glycation end products: a review. Diabetologia 44, 129146.
2 Baynes, JW, Watkins, NG, Fisher, CI, et al. (1989) The Amadori product on protein: structure and reactions. Prog Clin Biol Res 304, 4367.
3 Monnier, VM (1989) Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem 264, 2159721602.
4 Vlassara, H (1996) Advanced glycation end products and atherosclerosis. Ann Med 28, 419426.
5 Lyons, TJ, Silvestri, G, Dunn, JA, et al. (1991) Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts. Diabetes 40, 10101015.
6 Brownlee, M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46, 223234.
7 Shuvaev, VV, Laffont, I, Serot, JM, et al. (2001) Increased protein glycation in cerebrospinal fluid of Alzheimer's disease. Neurobiol Aging 22, 397402.
8 Luthra, M & Balasubramanian, D (1993) Nonenzymatic glycation alters protein structure and stability. A study of two eye lens crystallins. J Biol Chem 268, 1811918227.
9 Kumar, MS, Reddy, PY, Kumar, PA, et al. (2004) Effect of dicarbonyl-induced browning on α-crystallin chaperone-like activity: physiological significance and caveats of in vitro aggregation assays. Biochem J 379, 273282.
10 Beswick, HT & Harding, JJ (1987) Conformational changes induced in lens α- and γ-crystallins by modification with glucose 6-phosphate. Implications for cataract. Biochem J 246, 761769.
11 Stitt, A, Gardiner, TA, Alderson, NL, et al. (2002) The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51, 28262832.
12 Wada, R, Nishizawa, Y, Yagihashi, N, et al. (2001) Effects of OPB-9195, anti-glycation agent, on experimental diabetic neuropathy. Eur J Clin Invest 31, 513520.
13 Vasan, S, Zhang, X, Zhang, X, et al. (1996) An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 382, 275278.
14 Edelstein, D & Brownlee, M (1992) Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes 41, 2629.
15 Freedman, BI, Wuerth, JP, Cartwright, K, et al. (1999) Design and baseline characteristics for the aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy (ACTION II). Control Clin Trials 20, 493510.
16 Taguchi, T, Sugiura, M, Hamada, Y, et al. (1998) In vivo formation of a Schiff base of aminoguanidine with pyridoxal phosphate. Biochem Pharmacol 55, 16671671.
17 Ahmad, MS & Ahmed, N (2006) Antiglycation properties of aged garlic extract: possible role in prevention of diabetic complications. J Nutr 136, 796S799S.
18 Grover, JK, Yadav, S & Vats, V (2002) Medicinal plants of India with antidiabetic potentials. J Ethnopharmacol 81, 81100.
19 Saraswat, M, Reddy, PY, Muthenna, P, et al. (2009) Prevention of non-enzymic glycation of proteins by dietary agents: prospects for alleviating diabetic complications. Br J Nutr 101, 17141721.
20 Mrudula, T, Suryanarayana, P, Srinivas, PN, et al. (2007) Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina. Biochem Biophys Res Commun 361, 528532.
21 Kumar, PA, Reddy, PY, Srinivas, PN, et al. (2009) Delay of diabetic cataract in rats by the antiglycating potential of cumin through modulation of α-crystallin chaperone activity. J Nutr Biochem 20, 553562.
22 Saraswat, M, Suryanarayana, P, Reddy, PY, et al. (2010) Antiglycating potential of Zingiber officinalis and delay of diabetic cataract in rats. Mol Vis 16, 15251537.
23 Kusirisin, W, Srichairatanakool, S, Lerttrakarnnon, P, et al. (2009) Antioxidative activity, polyphenolic content and anti-glycation effect of some Thai medicinal plants traditionally used in diabetic patients. Med Chem 5, 139147.
24 Nakagawa, T, Yokozawa, T, Terasawa, K, et al. (2002) Protective activity of green tea against free radical- and glucose-mediated protein damage. J Agric Food Chem 50, 24182422.
25 Nagasawa, T, Tabata, N, Ito, Y, et al. (2003) Dietary G rutin suppresses glycation in tissue proteins of streptozotocin induced diabetic rats. Mol Cell Biochem 252, 141147.
26 Pashikanti, S, de Alba, DR, Boissonneault, GA, et al. (2010) Rutin metabolites: novel inhibitors of nonoxidative advanced glycation end products. Free Radic Biol Med 48, 656663.
27 Kumar, PA, Kumar, MS, Reddy, GB, et al. (2007) Effect of glycation on alpha-crystallin structure and chaperone-like function. Biochem J 408, 251258.
28 Uchida, K, Kanematsu, M, Sakai, K, et al. (1998) Protein-bound acrolein: potential markers for oxidative stress. Proc Natl Acad Sci U S A 95, 48824887.
29 Price, DL, Rhett, PM, Thorpe, SR, et al. (2001) Chelating activity of advanced glycation end-product inhibitors. J Biol Chem 276, 4896748972.
30 Brown, JE, Khodr, H, Hider, RC, et al. (1998) Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem J 330, 11731178.
31 Booth, AA, Khalifah, RG, Todd, P, et al. (1997) In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs): novel inhibition of post-Amadori glycation pathways. J Biol Chem 28, 54305437.
32 Suryanarayana, P, Saraswat, M, Mrudula, T, et al. (2005) Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Invest Ophthalmol Vis Sci 46, 20922099.
33 Padayatti, PS, Ng, AS, Uchida, K, et al. (2001) Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Invest Ophthalmol Vis Sci 42, 12991304.
34 Ikeda, K, Higashi, T, Sano, H, et al. (1996) ɛ-(Carboxymethyl) lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry 35, 80758083.
35 Nagaraj, RH, Shipanova, IN & Faust, FM (1996) Protein cross-linking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine–lysine cross-link derived from methylglyoxal. J Biol Chem 271, 1933819345.
36 Ahmed, MU, Brinkmann-Frye, E, Degenhardt, TP, et al. (1997) N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J 324, 565570.
37 Glomb, MA & Monnier, VM (1995) Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem 270, 1001710026.
38 Saxena, P, Saxena, AK, Cui, XL, et al. (2000) Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Invest Ophthalmol Vis Sci 41, 14731481.
39 Sajithlal, GB, Chithra, P & Chandrakasan, G (1998) The role of metal-catalyzed oxidation in the formation of advanced glycation end products: an in vitro study on collagen. Free Radic Biol Med 25, 265269.
40 Mohan, V, Sandeep, S, Deepa, RB, et al. (2007) Epidemiology of type 2 diabetes: Indian scenario. Indian J Med Res 125, 217230.
41 Wild, S, Roglic, G, Green, A, et al. (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 10471053.
42 Nagasawa, T, Tabata, N, Ito, Y, et al. (2003) Inhibition of glycation reaction in tissue protein incubations by water soluble rutin derivative. Mol Cell Biochem 249, 310.
43 Cervantes-Laurean, D, Schramm, DD, Jacobson, EL, et al. (2006) Inhibition of advanced glycation end product formation on collagen by rutin and its metabolites. J Nutr Biochem 17, 531540.
44 Griffiths, LA & Barrow, A (1972) Metabolism of flavonoid compounds in germ-free rats. Biochem J 130, 11611162.
45 Matsuda, H, Wang, T, Managi, H, et al. (2003) Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg Med Chem 11, 53175323.

Keywords

Inhibition of advanced glycation end-product formation on eye lens protein by rutin

  • P. Muthenna (a1), C. Akileshwari (a1), Megha Saraswat (a1) and G. Bhanuprakash Reddy (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed