References
1McAllister, TA, Beauchemin, KA, Hao, X, et al. (2011) Greenhouse gases in animal agriculture – finding a balance between food and emissions. Anim Feed Sci Technol 166, 167, 1–796.
2Cottle, DJ, Nolan, JV & Wiedemann, SG (2011) Ruminant enteric methane mitigation: a review. Anim Prod Sci 51, 491–514.
3Carulla, JE, Kreuzer, M, Machmüller, A, et al. (2005) Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust J Agric Res 56, 961–970.
4Bhatta, R, Uyeno, Y, Tajima, K, et al. (2009) Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J Dairy Sci 92, 5512–5522.
5Pellikaan, WF, Stringano, E, Leenaars, J, et al. (2011) Evaluating effects of tannins on extent and rate of in vitro gas and CH4 production using an automated pressure evaluation system (APES). Anim Feed Sci Technol , 377–390.
6Hariadi, BT & Santoso, B (2010) Evaluation of tropical plants containing tannin on in vitro methanogenesis and fermentation parameters using rumen fluid. J Sci Food Agric 90, 456–461.
7Animut, G, Puchala, R, Goetsch, AL, et al. (2008) Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim Feed Sci Technol 144, 212–227.
8Tiemann, TT, Lascano, CE, Wettstein, H-R, et al. (2008) Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal 2, 790–799.
9Waghorn, G (2008) Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production – progress and challenges. Anim Feed Sci Technol 147, 116–139.
10Jayanegara, A, Wina, E, Soliva, CR, et al. (2011) Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim Feed Sci Technol 163, 231–243.
11Tiemann, TT, Lascano, CE, Kreuzer, M, et al. (2008) The ruminal degradability of fibre explains part of the low nutritional value and reduced methanogenesis in highly tanniniferous tropical legumes. J Sci Food Agric 88, 1794–1803.
12Niderkorn, V, Baumont, R, Le Morvan, A, et al. (2011) Occurrence of associative effects between grasses and legumes in binary mixtures on in vitro rumen fermentation characteristics. J Anim Sci 89, 1138–1145.
13Provenza, FD, Villalba, JJ, Haskell, J, et al. (2007) The value to herbivores of plant physical and chemical diversity in time and space. Crop Sci 47, 382–398.
14Menke, KH & Steingass, H (1988) Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev 28, 7–55.
15Soliva, CR & Hess, HD (2007) Measuring methane emission of ruminants by in vitro and in vivo techniques. In Measuring Methane Production from Ruminants, pp. 15–31 [Makkar, HPS and Vercoe, PE, editors]. Dordrecht: Springer.
16Intergovernmental Panel on Climate Change (IPCC) (2006) Emissions from livestock and manure management. In Guidelines for National Greenhouse Inventories, 4, Agriculture, Forestry and Other Land Use, pp. 10.1–10.87 [Eggleston, HS, Buendia, L, Miwa, K, Ngara, T and Tanabe, K, editors]. Kanagawa: IGES.
17SPSS (2008) SPSS Statistics Version 17.0. Chicago: SPSS, Inc.
18Rogosic, J, Estell, RE, Ivankovic, S, et al. (2008) Potential mechanisms to increase shrub intake and performance of small ruminants in Mediterranean shrubby ecosystems. Small Rum Res 74, 1–15.
19Niderkorn, V & Baumont, R (2009) Associative effects between forages on feed intake and digestion in ruminants. Animal 3, 951–960.
20Liu, JX, Susenbeth, A & Südekum, KH (2002) In vitro gas production measurements to evaluate interactions between untreated and chemically treated rice straws, grass hay, and mulberry leaves. J Anim Sci 80, 517–524.
21Robinson, PH, Getachew, G & Cone, JW (2009) Evaluation of the extent of associative effects of two groups of four feeds using an in vitro gas production procedure. Anim Feed Sci Technol 150, 9–17.
22Wang, DL, Fan, J, Xing, F, et al. (2008) Alfalfa as a supplement of dried cornstalk diets: associative effects on intake, digestibility, nitrogen metabolisation, rumen environment and hematological parameters in sheep. Livest Sci 113, 87–97.
23Zhang, XD, Wang, JK, Chen, WJ, et al. (2010) Associative effects of supplementing rice straw-based diet with cornstarch on intake, digestion, rumen microbes and growth performance of Huzhou lambs. Anim Sci J 81, 172–179.
24Moss, AR, Givens, DI & Garnsworthy, PC (1995) The effect of supplementing grass silage with barley on digestibility, in sacco degradability, rumen fermentation and methane production in sheep at two levels of intake. Anim Feed Sci Technol 55, 9–33.
25Moss, AR & Givens, DI (2002) The effect of supplementing grass silage with soya bean meal on digestibility, in sacco degradability, rumen fermentation and methane production in sheep. Anim Feed Sci Technol 97, 127–143.
26Beauchemin, KA, Kreuzer, M, O'Mara, F, et al. (2008) Nutritional management for enteric methane abatement: a review. Aust J Exp Agric 48, 21–27.
27Jayanegara, A, Kreuzer, M & Leiber, F (2012) Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J Anim Physiol Anim Nutr 96, 365–375.
28Silanikove, N, Perevolotsky, A & Provenza, FD (2001) Use of tannin-binding chemicals to assay for tannins and their negative postingestive effects in ruminants. Anim Feed Sci Technol 91, 69–81.
29Tavendale, MH, Meagher, LP, Pacheco, D, et al. (2005) Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol , 403–419.
30McSweeney, CS, Palmer, B, McNeill, DM, et al. (2001) Microbial interactions with tannins: nutritional consequences for ruminants. Anim Feed Sci Technol 91, 83–93.
31Makkar, HPS (2003) Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rum Res 49, 241–256.
32Murdiati, TB, McSweeney, CS, Campbell, RSF, et al. (1990) Prevention of hydrolysable tannin toxicity in goats fed Clidemia hirta by calcium hydroxide supplementation. J Appl Toxicol 10, 325–331.
33Janssen, PH (2010) Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol 160, 1–22.
34Goel, G, Makkar, HPS & Becker, K (2008) Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage- and concentrate-based feeds to methane. Anim Feed Sci Technol 147, 72–89.
35Tan, HY, Sieo, CC, Abdullah, N, et al. (2011) Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim Feed Sci Technol 169, 185–193.
36Van Kessel, JAS & Russell, JB (1996) The effect of pH on ruminal methanogenesis. FEMS Microbiol Ecol 20, 205–210.
37Rogosic, J, Pfister, JA, Provenza, FD, et al. (2006) The effect of activated charcoal and number of species offered on intake of Mediterranean shrubs by sheep and goats. Appl Anim Behav Sci 101, 305–317.
38Rogosic, J, Estell, RE, Skobic, D, et al. (2007) Influence of secondary compound complementarity and species diversity on consumption of Mediterranean shrubs by sheep. Appl Anim Behav Sci 107, 58–65.
39Lisonbee, LD, Villalba, JJ & Provenza, FD (2009) Effects of tannin on selection by sheep of forages containing alkaloids, tannins and saponins. J Sci Food Agric 89, 2668–2677.
40Makkar, HPS, Francis, G & Becker, K (2007) Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 1, 1371–1391.