Skip to main content Accessibility help
×
Home

Highly viscous guar gum shifts dietary amino acids from metabolic use to fermentation substrate in domestic cats

  • Kristel Rochus (a1), Geert P. J. Janssens (a1), Hannelore Van de Velde (a1), Adronie Verbrugghe (a1), Birgitte Wuyts (a2), Lynn Vanhaecke (a3) and Myriam Hesta (a1)...

Abstract

The present study evaluated the potential of affecting amino acid metabolism through intestinal fermentation in domestic cats, using dietary guar gum as a model. Apparent protein digestibility, plasma fermentation metabolites, faecal fermentation end products and fermentation kinetics (exhaled breath hydrogen concentrations) were evaluated. Ten cats were randomly assigned to either guar gum- or cellulose-supplemented diets, that were fed in two periods of 5 weeks in a crossover design. No treatment effect was seen on fermentation kinetics. The apparent protein digestibility (P= 0·07) tended to be lower in guar gum-supplemented cats. As a consequence of impaired small-intestinal protein digestion and amino acid absorption, fermentation of these molecules in the large intestine was stimulated. Amino acid fermentation has been shown to produce high concentrations of acetic and butyric acids. Therefore, no treatment effect on faecal propionic acid or plasma propionylcarnitine was observed in the present study. The ratio of faecal butyric acid:total SCFA tended to be higher in guar gum-supplemented cats (P= 0·05). The majority of large-intestinal butyric acid is absorbed by colonocytes and metabolised to 3-hydroxy-butyrylcoenzyme A, which is then absorbed into the bloodstream. This metabolite was analysed in plasma as 3-hydroxy-butyrylcarnitine, which was higher (P= 0·02) in guar gum-supplemented cats. In all probability, the high viscosity of the guar gum supplement was responsible for the impaired protein digestion and amino acid absorption. Further research is warranted to investigate whether partially hydrolysed guar gum is useful to potentiate the desirable in vivo effects of this fibre supplement.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Highly viscous guar gum shifts dietary amino acids from metabolic use to fermentation substrate in domestic cats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Highly viscous guar gum shifts dietary amino acids from metabolic use to fermentation substrate in domestic cats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Highly viscous guar gum shifts dietary amino acids from metabolic use to fermentation substrate in domestic cats
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: K. Rochus, fax +32 9 264 78 48, email kristel.rochus@ugent.be

References

Hide All
1Chudzikowski, RJ (1971) Guar gum and its applications. J Soc Cosm Chem 22, 4360.
2Fujioka, R, Tanaka, Y & Yoshimura, T (2009) Synthesis and properties of superabsorbent hydrogels based on guar gum and succinic anhydride. J Appl Polym Sci 114, 612616.
3Stewart, ML & Slavin, JL (2006) Molecular weight of guar gum affects short-chain fatty acid profile in model intestinal fermentation. Mol Nutr Food Res 50, 971976.
4Sunvold, GD, Fahey, GC, Merchen, NR, et al. (1995) Dietary fiber for cats – in-vitro fermentation of selected fiber sources by cat fecal inoculum and in-vivo utilization of diets containing selected fiber sources and their blends. J Anim Sci 73, 23292339.
5Rochus, K, Janssens, G, Bosch, G, et al. (2010) In vitro evaluation of fibre and protein fermentation substrates in cats. In Proceedings of the WALTHAM International Nutritional Sciences Symposium, pp. 48. Cambridge: Cambridge University Press.
6Verbrugghe, A, Hesta, M, Gommeren, K, et al. (2009) Oligofructose and inulin modulate glucose and amino acid metabolism through propionate production in normal-weight and obese cats. Br J Nutr 102, 318325.
7Verbrugghe, A, Janssens, GPJ, Meininger, E, et al. (2010) Intestinal fermentation modulates postprandial acylcarnitine profile and nitrogen metabolism in a true carnivore: the domestic cat (Felis catus). Br J Nutr 104, 972979.
8Verbrugghe, A, Hesta, M, Daminet, S, et al. (2011) Propionate absorbed from the colon acts as gluconeogenic substrate in a strict carnivore, the domestic cat (Felis catus). J Anim Physiol Anim Nutr (Epublication ahead of print version 7 September 2011).
9Kettelhut, IC, Foss, MC & Migliorini, RH (1980) Glucose-homeostasis in a carnivorous animal (cat) and in rats fed a high-protein diet. Am J Physiol 239, R437R444.
10Macdonald, ML, Rogers, QR & Morris, JG (1984) Nutrition of the domestic cat, a mammalian carnivore. Ann Rev Nutr 4, 521562.
11Morris, JG (2002) Idiosyncratic nutrient requirements of cats appear to be diet-induced evolutionary adaptations. Nutr Res Rev 15, 153168.
12Kley, S, Hoenig, M, Glushka, J, et al. (2009) The impact of obesity, sex, and diet on hepatic glucose production in cats. Am J Physiol Regul Integr Comp Physiol 296, R936R943.
13Bunch, SE (2003) Hepatobiliary diseases in the cat. In Small Animal Internal Medicine, 3rd ed., pp. 506524 [Nelson, RW and Guillermo Couto, C, editors]. St Louis, MO: Mosby, Inc.
14Polzin, DJ & Osborne, CA (2000) Dietary management of feline chronic renal failure: where are we now? In what direction are we headed? J Feline Med Surg 2, 7582.
15Zoran, DL (2002) The carnivore connection to nutrition in cats. J Am Vet Med Assoc 221, 15591567.
16Papasouliotis, K, Gruffydd-Jones, TJ, Sparkes, AH, et al. (1995) A comparison of orocecal transit times assessed by the breath hydrogen test and the sulphasalazine/sulphapyridine method in healthy Beagle dogs. Res Vet Sci 58, 263267.
17National Research Council (2006) Nutrient requirements and dietary nutrient concentrations. In Nutrient Requirements for Dogs and Cats, 2nd ed., pp. 366367 [National Research Council, , editor]. Washington, DC: The National Academies Press.
18Prosky, L, Asp, NG, Furda, I, et al. (1985) Determination of total dietary fibre in foods and food-products – collaborative study. J Assoc Off Anal Chem 68, 677679.
19Hesta, M, Janssens, GPJ, Debraekeleer, J, et al. (2001) The effect of oligofructose and inulin on faecal characteristics and nutrient digestibility in healthy cats. J Anim Physiol Anim Nutr 85, 135141.
20Greenberg, AE, Clesceri, LS & Eaton, AD (1992) Aggregate organic constituents: organic and volatile acids. In Standard Methods for the Examination of Water and Wastewater, 18th ed., pp. 5354 [Greenberg, AE, Clesceri, LS and Eaton, AD, editors]. Washington, DC: American Public Health Association Publications.
21Bremner, JM & Keeney, RD (1965) Steam distillation methods for determination of ammonium, nitrate and nitrite. Anal Chem Acta 32, 485495.
22Mason, V (1969) Some observations on the distribution and origin of nitrogen in sheep faeces. J Agric Sci 73, 99111.
23Hesta, M, Roosen, W, Janssens, GPJ, et al. (2003) Prebiotics affect nutrient digestibility but not faecal ammonia in dogs fed increased dietary protein levels. Br J Nutr 90, 10071014.
24Zytkovicz, TH, Fitzgerald, EF, Marsden, D, et al. (2001) Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England newborn screening program. Clin Chem 47, 19451955.
25Spackman, DH, Stein, WH & Moore, S (1958) Automatic recording apparatus for use in the chromatography of amino acids. Anal Chem 30, 11901206.
26Cullison, AE (1979) Apparent digestibility. In Feed and Feeding, 2nd ed., pp. 4145 [Cullison, AE, editor]. Reston, VA: Reston Publishing Company.
27Chandler, ML, Guilford, WG & Lawoko, CRO (1997) Radiopaque markers to evaluate gastric emptying and small intestinal transit time in healthy cats. J Vet Intern Med 11, 361364.
28Chandler, ML, Guilford, WG, Lawoko, CRO, et al. (1999) Gastric emptying and intestinal transit times of radiopaque markers in cats fed a high-fiber diet with and without low-dose intravenous diazepam. Vet Radiol Ultrasound 40, 38.
29Cummings, JH, Pomare, EW, Branch, WJ, et al. (1987) Short chain fatty acids in the human large intestine, portal, hepatic and venous blood. Gut 28, 12211227.
30von Engelhardt, W (1995) Absorption of short-chain fatty acids from the large intestine. In Physiological and Clinical Aspects of Short-chain Fatty Acids, 1st ed., pp. 149169 [Cummings, JH, Rombeau, JL and Sakata, T, editors]. Cambridge: Cambridge University Press.
31Bremer, J (1983) Carnitine – metabolism and functions. Physiol Rev 63, 14211466.
32Michal, G (1999) Amino acids and derivatives. In Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, 1st ed., pp. 4748 [Michal, G, editor]. New York: Wiley, Inc.
33Macfarlane, GT & Gibson, GR (1995) Microbiological aspects of the production of short-chain fatty acids in the large bowel. In Physiological and Clinical Aspects of Short-chain Fatty Acids, 1st ed., pp. 97101 [Cummings, JH, Rombeau, JL and Sakata, T, editors]. Cambridge: Cambridge University Press.
34Sugawara, T, Ito, Y, Nishizawa, N, et al. (2009) Measurement of the rate of myofibrillar protein degradation using the arteriovenous difference in plasma 3-methylhistidine concentration in rats. J Nutr Sci Vitaminol 55, 381384.
35Dragsted, LO (2010) Biomarkers of meat intake and the application of nutrigenomics. Meat Sci 84, 301307.
36Roediger, WEW (1995) The place of short-chain fatty acids in colonocyte metabolism in health and ulcerative colitis: the impaired colonocyte barrier. In Physiological and Clinical Aspects of Short-chain Fatty Acids, 1st ed., pp. 337351 [Cummings, JH, Rombeau, JL and Sakata, T, editors]. Cambridge: Cambridge University Press.
37Henning, S & Hird, FJR (1972) Ketogenesis from butyrate and acetate by cecum and colon of rabbits. Biochem J 130, 785790.
38Bissett, SA, Spohr, A, Guilford, WG, et al. (1998) Reproducibility of breath hydrogen concentration measurements in dogs after change of diet. Am J Vet Res 59, 15231525.
39Lu, L, Xing, D, Xie, T, et al. (2010) Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells. Biosens Bioelectron 25, 26902695.
40Owusu-Asiedu, A, Patience, JF, Laarveld, B, et al. (2006) Effects of guar gum and cellulose on digesta passage rate, ileal microbial populations, energy and protein digestibility, and performance of grower pigs. J Anim Sci 84, 843852.
41Jenkins, DJA, Wolever, TMS, Leeds, AR, et al. (1978) Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. Br Med J 1, 13921394.
42Bueno, L, Praddaude, F, Fioramonti, J, et al. (1981) Effect of dietary fibre on gastrointestinal motility and jejunal transit-time in dogs. Gastroenterology 80, 701707.

Keywords

Highly viscous guar gum shifts dietary amino acids from metabolic use to fermentation substrate in domestic cats

  • Kristel Rochus (a1), Geert P. J. Janssens (a1), Hannelore Van de Velde (a1), Adronie Verbrugghe (a1), Birgitte Wuyts (a2), Lynn Vanhaecke (a3) and Myriam Hesta (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed