Skip to main content Accessibility help
×
Home

High folic acid increases cell turnover and lowers differentiation and iron content in human HT29 colon cancer cells

  • Linette Pellis (a1), Yvonne Dommels (a1), Dini Venema (a1), Ab van Polanen (a1), Esther Lips (a1), Hakan Baykus (a1), Frans Kok (a2), Ellen Kampman (a2) and Jaap Keijer (a1)...

Abstract

Folate, a water-soluble B vitamin, is a cofactor in one-carbon metabolism and is essential for DNA synthesis, amino acid interconversion, methylation and, consequently, normal cell growth. In animals with existing pre-neoplastic and neoplastic lesions, folic acid supplementation increases the tumour burden. To identify processes that are affected by increased folic acid levels, we compared HT29 human colon cancer cells exposed to a chronic supplemental (100 ng/ml) level of folic acid to cells exposed to a normal (10 ng/ml) level of folic acid, in the presence of vitamin B12 and other micronutrients involved in the folate–methionine cycle. In addition to higher intracellular folate levels, HT29 cells at 100 ng folic acid/ml displayed faster growth and higher metabolic activity. cDNA microarray analysis indicated an effect on cell turnover and Fe metabolism. We fully confirmed these effects at the physiological level. At 100 ng/ml, cell assays showed higher proliferation and apoptosis, while gene expression analysis and a lower E-cadherin protein expression indicated decreased differentiation. These results are in agreement with the promoting effect of folic acid supplementation on established colorectal neoplasms. The lower expression of genes related to Fe metabolism at 100 ng folic acid/ml was confirmed by lower intracellular Fe levels in the cells exposed to folic acid at 100 ng/ml. This suggests an effect of folate on Fe metabolism.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      High folic acid increases cell turnover and lowers differentiation and iron content in human HT29 colon cancer cells
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      High folic acid increases cell turnover and lowers differentiation and iron content in human HT29 colon cancer cells
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      High folic acid increases cell turnover and lowers differentiation and iron content in human HT29 colon cancer cells
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr J. Keijer, fax +31 317 417717, email jaap.keijer@wur.nl

References

Hide All
1 Zeisel, SH (2000) Choline: an essential nutrient for humans. Nutrition 16, 669671.
2 Gu, L, Wu, J, Qiu, L, Jennings, CD & Li, G-M (2002) Involvement of DNA mismatch repair in folate deficiency-induced apoptosis. J Nutr Biochem 13, 355363.
3 Scott, JM (1999) Folate and vitamin B12. Proc Nutr Soc 58, 441448.
4 Li, G-M, Presnell, SR & Gu, L (2003) Folate deficiency, mismatch repair-dependent apoptosis, and human disease. J Nutr Biochem 14, 568575.
5 Kim, YI (1999) Folate and carcinogenesis: evidence, mechanisms, and implications. J Nutr Biochem 10, 6688.
6 Van Guelpen, B, Hultdin, J, Johansson, I, Hallmans, G, Stenling, R, Riboli, E, Winkvist, A & Palmqvist, R (2006) Low folate levels may protect against colorectal cancer. Gut 55, 14611466.
7 Stover, PJ (2004) Physiology of folate and vitamin B12 in health and disease. Nutr Rev 62, S3S13.
8 Lucock, M (2000) Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 71, 121138.
9 Bashir, O, FitzGerald, AJ & Goodlad, RA (2004) Both suboptimal and elevated vitamin intake increase intestinal neoplasia and alter crypt fission in the ApcMin/+ mouse. Carcinogenesis 25, 15071515.
10 Kim, YI (2004) Folate, colorectal carcinogenesis, and DNA methylation: lessons from animal studies. Environ Mol Mutagen 44, 1025.
11 Kim, YI (2003) Role of folate in colon cancer development and progression. J Nutr 133, Suppl. 1, 3731S3739S.
12 Kim, YI (2006) Folate: a magic bullet or a double edged sword for colorectal cancer prevention? Gut 55, 13871389.
13 Kim, YI (2007) Folate and colorectal cancer: an evidence-based critical review. Mol Nutr Food Res 51, 267292.
14 Rampersaud, GC, Kauwell, GPA & Bailey, LB (2003) Folate: a key to optimizing health and reducing disease risk in the elderly. J Am Coll Nutr 22, 18.
15 Hayashi, I, Sohn, K-J, Stempak, JM, Croxford, R & Kim, Y-I (2007) Folate deficiency induces cell-specific changes in the steady-state transcript levels of genes involved in folate metabolism and 1-carbon transfer reactions in human colonic epithelial cells. J Nutr 137, 607613.
16 Courtemanche, C, Huang, AC, Elson-Schwab, I, Kerry, N, Ng, BY & Ames, BN (2004) Folate deficiency and ionizing radiation cause DNA breaks in primary human lymphocytes: a comparison. FASEB J 18, 209211.
17 Jhaveri, MS, Wagner, C & Trepel, JB (2001) Impact of extracellular folate levels on global gene expression. Mol Pharmacol 60, 12881295.
18 Novakovic, P, Stempak, JM, Sohn, K-J & Kim, Y-I (2006) Effects of folate deficiency on gene expression in the apoptosis and cancer pathways in colon cancer cells. Carcinogenesis 27, 916924.
19 Charrier, L, Jarry, A, Toquet, C, Bou-Hanna, C, Chedorge, M, Denis, M, Vallette, G & Laboisse, CL (2002) Growth phase-dependent expression of ICAD-L/DFF45 modulates the pattern of apoptosis in human colonic cancer cells. Cancer Res 62, 21692174.
20 Gueddari, N, Favre, G, Marmouget, C, Soula, G & Le Gaillard, F (1996) Involvement of tyrosine kinase activity in the low-density lipoprotein receptor expression in human lung adenocarcinoma cell line A549. Biochimie 78, 874881.
21 Viallard, V, Lacombe, C, Trocheris, V, Tabacik, C & Aliau, S (1990) Metabolism of low-density lipoprotein in differentiated and undifferentiated HT29 colon cancer cells. Int J Cancer 46, 320325.
22 Konings, EJM (1999) A validated liquid chromatographic method for determining folates in vegetables, milk powder, liver and flour. J AOAC Int 82, 119127.
23 Melnyk, S, Pogribna, M, Pogribny, IP, Yi, P & James, SJ (2000) Measurement of plasma and intracellular S-adenosylmethionine and S-adenosylhomocysteine utilizing coulometric electrochemical detection: alterations with plasma homocysteine and pyridoxal 5′-phosphate concentrations. Clin Chem 46, 265272.
24 Huveneers Oorsprong, MBM, Hoogenboom, LAP & Kuiper, HA (1997) The use of the MTT test for determining the cytotoxicity of veterinary drugs in pig hepatocytes. Toxicol In Vitro 11, 385392.
25 Pellis, L, Franssen-van Hal, NL, Burema, J & Keijer, J (2003) The intraclass correlation coefficient applied for evaluation of data correction, labeling methods, and rectal biopsy sampling in DNA microarray experiments. Physiol Genomics 16, 99106.
26 Sohn, KJ, Stempak, JM, Reid, S, Shirwadkar, S, Mason, JB & Kim, YI (2003) The effect of dietary folate on genomic and p53-specific DNA methylation in rat colon. Carcinogenesis 24, 8190.
27 Mason, JB (2003) Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism. J Nutr 133, 941S947S.
28 Valasek, MA & Repa, JJ (2005) The power of real-time PCR. Adv Physiol Educ 29, 151159.
29 Huang, RFS, Ho, YH, Lin, HL, Wei, JS & Liu, TZ (1999) Folate deficiency induces a cell cycle-specific apoptosis in HepG2 cells. J Nutr 129, 2531.
30 Singh, R, Fouladi-Nashta, AA, Halliday, DLN, Barrett, DA & Sinclair, KD (2006) Methotrexate induced differentiation in colon cancer cells is primarily due to purine deprivation. J Cell Biochem 99, 146155.
31 Crott, JW, Choi, SW, Ordovas, JM, Ditelberg, JS & Mason, JB (2004) Effects of dietary folate and aging on gene expression in the colonic mucosa of rats: implications for carcinogenesis. Carcinogenesis 25, 6976.
32 Augenlicht, LH, Bordonaro, M, Heerdt, BG, Mariadason, J & Velcich, A (1999) Cellular mechanisms of risk and transformation. Ann N Y Acad Sci 889, 2031.
33 Penta, JS, Johnson, FM, Wachsman, JT & Copeland, WC (2001) Mitochondrial DNA in human malignancy. Mutat Res 488, 119133.
34 Arends, JW (2000) Molecular interactions in the Vogelstein model of colorectal carcinoma. J Pathol 190, 412416.
35 Le Leu, RK, Young, GP & McIntosh, GH (2000) Folate deficiency reduces the development of colorectal cancer in rats. Carcinogenesis 21, 22612265.
36 van den Donk, M, Buijsse, B, van den Berg, SW, Ocke, MC, Harryvan, JL, Nagengast, FM, Kok, FJ & Kampman, E (2005) Dietary intake of folate and riboflavin, MTHFR C677T genotype, and colorectal adenoma risk: a Dutch case–control study. Cancer Epidemiol Biomarkers Prev 14, 15621566.
37 Kim, YI (2004) Will mandatory folic acid fortification prevent or promote cancer? Am J Clin Nutr 80, 11231128.
38 Khosraviani, K, Weir, HP, Hamilton, P, Moorehead, J & Williamson, K (2002) Effect of folate supplementation on mucosal cell proliferation in high risk patients for colon cancer. Gut 51, 195199.
39 Hirohashi, S (1998) Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 153, 333339.
40 Lind, GE, Thorstensen, L, Lovig, T, Meling, GI, Hamelin, R, Rognum, TO, Esteller, M & Lothe, RA (2004) A CpG island hypermethylation profile of primary colorectal carcinomas and colon cancer cell lines. Mol Cancer 3, 28.
41 Buda, A & Pignatelli, M (2004) Cytoskeletal network in colon cancer: from genes to clinical application. Int J Biochem Cell Biol 36, 759765.
42 Wright, AJA, Finglas, PM & Southon, S (2001) Proposed mandatory fortification of the UK diet with folic acid: have potential risks been underestimated? Trends Food Sci Technol 12, 313–321.
43 Westerman, DA, Evans, D & Metz, J (1999) Neutrophil hypersegmentation in iron deficiency anaemia: a case-control study. Br J Haematol 107, 512515.
44 Oppenheim, EW, Adelman, C, Liu, X & Stover, PJ (2001) Heavy chain ferritin enhances serine hydroxymethyltransferase expression and de novo thymidine biosynthesis. J Biol Chem 276, 1985519861.
45 Vitale, JJ, Streiff, RR & Hellerstein, EE (1965) Folate metabolism and iron deficency. Lancet 286, 393–394.
46 Oppenheim, EW, Nasrallah, IM, Mastri, MG & Stover, PJ (2000) Mimosine is a cell-specific antagonist of folate metabolism. J Biol Chem 275, 1926819274.
47 Picciano, MF (2003) Pregnancy and lactation: physiological adjustments, nutritional requirements and the role of dietary supplements. J Nutr 133, 1997S–2002S.

Keywords

Related content

Powered by UNSILO

High folic acid increases cell turnover and lowers differentiation and iron content in human HT29 colon cancer cells

  • Linette Pellis (a1), Yvonne Dommels (a1), Dini Venema (a1), Ab van Polanen (a1), Esther Lips (a1), Hakan Baykus (a1), Frans Kok (a2), Ellen Kampman (a2) and Jaap Keijer (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.