Skip to main content Accessibility help
×
Home

Hepatic structural alteration in adult programmed offspring (severe maternal protein restriction) is aggravated by post-weaning high-fat diet

  • Vanessa Souza-Mello (a1), Carlos A. Mandarim-de-Lacerda (a1) and Márcia B. Aguila (a1)

Abstract

The present study aimed to evaluate the effects of a post-weaning high-fat (HF) diet upon hepatic morphology in rats subjected to perinatal protein restriction. Pregnant Wistar rats were assigned to a normal-protein diet (NP; with 19 % of protein) or a low-protein (LP) diet (with 5 % of protein). At weaning, the following groups were formed: NP and NP-HF, males and females, which were fed standard chow and an HF diet, respectively. Likewise, LP rat dams originated LP and LP-HF offspring, both sexes. Euthanasia was performed at 6 months of age. Three-way ANOVA disclosed a three-factor interaction among sex, perinatal diet and HF diet in relation to body mass, retroperitoneal fat pad, liver mass:tibia length ratio, binucleation rate and hepatocyte area at 6 months old (P < 0·05). The high-fat diet intensified the effects of perinatal protein restriction concerning systolic blood pressure, genital fat pad and hepatocyte number (P < 0·05; two-way ANOVA). Furthermore, higher steatosis rates and insulin and leptin concentrations were found in males fed on the HF diet, indicating a sex–post-weaning diet interaction (P < 0·05; two-way ANOVA). Fetal programming and HF diet as a single stimulus caused mild hypertension at 3 months, an important reduction in hepatocyte number as well as stage 1 steatosis at 6 months. However, hypertension and hepatocyte number deficit were worsened and grade 2 steatosis occurred after exposure to the HF diet. All of these serve to highlight the paramount importance of intra-uterine conditions and postnatal diet quality when it comes to the pathogenesis of chronic diseases.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Hepatic structural alteration in adult programmed offspring (severe maternal protein restriction) is aggravated by post-weaning high-fat diet
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Hepatic structural alteration in adult programmed offspring (severe maternal protein restriction) is aggravated by post-weaning high-fat diet
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Hepatic structural alteration in adult programmed offspring (severe maternal protein restriction) is aggravated by post-weaning high-fat diet
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Márcia B. Aguila, fax +55 21 2587 6416, email mbaguila@uerj.br

References

Hide All
1Langley-Evans, SC & Sculley, DV (2005) Programming of hepatic antioxidant capacity and oxidative injury in the ageing rat. Mech Ageing Dev 126, 804812.
2Desai, M, Crowther, NJ, Lucas, A & Hales, CN (1996) Organ-selective growth in the offspring of protein-restricted mothers. Br J Nutr 76, 591603.
3Hales, CN & Ozanne, SE (2003) The dangerous road of catch-up growth. J Physiol 547, 510.
4Fernandez-Twinn, DS & Ozanne, SE (2006) Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiol Behav 88, 234243.
5Vickers, MH, Breier, BH, Cutfield, WS, Hofman, PL & Gluckman, PD (2000) Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab 279, E83E87.
6McMillen, IC & Robinson, JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85, 571633.
7Desai, M, Byrne, CD, Zhang, J, Petry, CJ, Lucas, A & Hales, CN (1997) Programming of hepatic insulin-sensitive enzymes in offspring of rat dams fed a protein-restricted diet. Am J Physiol 272, G1083G1090.
8Vickers, MH, Reddy, S, Ikenasio, BA & Breier, BH (2001) Dysregulation of the adipoinsular axis - a mechanism for the pathogenesis of hyperleptinemia and adipogenic diabetes induced by fetal programming. J Endocrinol 170, 323332.
9Kieffer, TJ & Habener, JF (2000) The adipoinsular axis: effects of leptin on pancreatic β-cells. Am J Physiol Endocrinol Metab 278, E1E14.
10Holness, MJ & Sugden, MC (1999) Antecedent protein restriction exacerbates development of impaired insulin action after high-fat feeding. Am J Physiol 276, E85E93.
11Koteish, A & Diehl, AM (2001) Animal models of steatosis. Semin Liver Dis 21, 89104.
12den Boer, M, Voshol, PJ, Kuipers, F, Havekes, LM & Romijn, JA (2004) Hepatic steatosis: a mediator of the metabolic syndrome. Lessons from animal models. Arterioscler Thromb Vasc Biol 24, 644649.
13Akbar, DH & Kawther, AH (2006) Non-alcoholic fatty liver disease and metabolic syndrome: what we know and what we don't know. Med Sci Monit 12, RA23RA26.
14Adams, LA & Angulo, P (2005) Recent concepts in non-alcoholic fatty liver disease. Diabet Med 22, 11291133.
15Aguila, MB, Pinheiro, AR, Parente, LB & Mandarim-de-Lacerda, CA (2003) Dietary effect of different high-fat diet on rat liver stereology. Liver Int 23, 363370.
16Woods, LL, Ingelfinger, JR & Rasch, R (2005) Modest maternal protein restriction fails to program adult hypertension in female rats. Am J Physiol Regul Integr Comp Physiol 289, R1131R1136.
17Armitage, JA, Lakasing, L, Taylor, PD, Balachandran, AA, Jensen, RI, Dekou, V, Ashton, N, Nyengaard, JR & Poston, L (2005) Developmental programming of aortic and renal structure in offspring of rats fed fat-rich diets in pregnancy. J Physiol 565, 171184.
18Armitage, JA, Taylor, PD & Poston, L (2005) Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. J Physiol 565, 38.
19Reeves, PG, Nielsen, FH & Fahey, GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123, 19391951.
20Langley-Evans, SC, Gardner, DS & Jackson, AA (1996) Maternal protein restriction influences the programming of the rat hypothalamic-pituitary-adrenal axis. J Nutr 126, 15781585.
21Wainwright, PE (1998) Issues of design and analysis relating to the use of multiparous species in developmental nutritional studies. J Nutr 128, 661663.
22Quinn, R (2005) Comparing rat's to human's age: how old is my rat in people years? Nutrition 21, 775777.
23Aoyama, T, Fukui, K, Takamatsu, K, Hashimoto, Y & Yamamoto, T (2000) Soy protein isolate and its hydrolysate reduce body fat of dietary obese rats and genetically obese mice (yellow KK). Nutrition 16, 349354.
24Yin, FCP, Spurgeon, HA, Rakusan, K, Weisfeldt, ML & Lakatta, EG (1982) Use of tibial length to quantify cardiac hypertrophy: application in the ageing rat. Am J Physiol 243, H941H947.
25Friedewald, WT, Levy, RI & Fredrickson, DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18, 499502.
26Scherle, W (1970) A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26, 5760.
27Sterio, DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134, 127136.
28Coatmellec-Taglioni, G, Dausse, JP, Ribiere, C & Giudicelli, Y (2000) Hypertension in cafeteria-fed rats: alterations in renal α2-adrenoceptor subtypes. Am J Hypertens 13, 529534.
29Colandré, M, Diez, R & Bernal, C (2003) Metabolic effects of trans fatty acids on an experimental dietary model. Br J Nutr 89, 631638.
30Ozanne, SE, Lewis, R, Jennings, BJ & Hales, CN (2004) Early programming of weight gain in mice prevents the induction of obesity by a highly palatable diet. Clin Sci (Lond) 106, 141145.
31Rich-Edwards, J, Stampfer, M, Manson, J, Rosner, B, Hankinson, S, Colditz, G, Willett, W & Hennekens, C (1997) Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. Br Med J 315, 396400.
32Dobrian, AD, Davies, MJ, Prewitt, RL & Lauterio, TJ (2000) Development of hypertension in a rat model of diet-induced obesity. Hypertension 35, 10091015.
33Coatmellec-Taglioni, G, Dausse, JP, Giudicelli, Y & Ribiere, C (2003) Sexual dimorphism in cafeteria diet-induced hypertension is associated with gender-related difference in renal leptin receptor down-regulation. J Pharmacol Exp Ther 305, 362367.
34Hall, J, Hildebrandt, D & Kuo, J (2001) Obesity hypertension: role of leptin and sympathetic nervous system. Am J Hypert 14, 103S115S.
35Rahmouni, K, Morgan, DA, Morgan, GM, Mark, AL & Haynes, WG (2005) Role of selective leptin resistance in diet-induced obesity hypertension. Diabetes 54, 20122018.
36Almeida, JR & Mandarim-de-Lacerda, CA (2005) Maternal gestational protein-calorie restriction decreases the number of glomeruli and causes glomerular hypertrophy in adult hypertensive rats. Am J Obstet Gynecol 192, 945951.
37Pires, KMP, Aguila, MB & Mandarim-de-Lacerda, CA (2006) Early renal structure alteration in rat offspring from dams fed low protein diet. Life Sci 79, 21282134.
38Woods, LL, Weeks, DA & Rasch, R (2004) Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int 65, 13391348.
39Holness, MJ, Fryer, LG & Sugden, MC (1999) Protein restriction during early development enhances insulin responsiveness but selectively impairs sensitivity to insulin at low concentrations in white adipose tissue during a later pregnancy. Br J Nutr 81, 481489.
40Angulo, P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346, 12211231.
41Van Steenbergen, W & Lanckmans, S (1995) Liver disturbances in obesity and diabetes mellitus. Int J Obes Relat Metab Disord 19, Suppl. 3, S27S36.
42Paradis, V, Perlemuter, G, Bonvoust, F, et al. (2001) High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology 34, 738744.
43Franzen, LE, Ekstedt, M, Kechagias, S & Bodin, L (2005) Semiquantitative evaluation overestimates the degree of steatosis in liver biopsies: a comparison to stereological point counting. Mod Pathol 18, 912916.
44Desai, M, Gayle, D, Babu, J & Ross, MG (2005) Permanent reduction in heart and kidney organ growth in offspring of undernourished rat dams. Am J Obstet Gynecol 193, 12241232.
45McMillen, IC, Adam, CL & Muhlhausler, BS (2005) Early origins of obesity: programming the appetite regulatory system. J Physiol 565, 917.
46Kershaw, EE & Flier, JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89, 25482556.
47Rees, WD, Hay, SM, Cruickshank, M, Reusens, B, Remacle, C, Antipatis, C & Grant, G (2006) Maternal protein intake in the pregnant rat programs the insulin axis and body composition in the offspring. Metabolism 55, 642649.
48Lafontan, M (2005) Fat cells: afferents and efferents messages define new approaches to treat obesity. Annu Rev Pharmacol Toxicol 45, 119146.
49Svegliati-Baroni, G, Candelaresi, C, Saccomanno, S, et al. (2006) A model of insulin resistance and nonalcoholic steatohepatitis in rats: role of peroxisome proliferator-activated receptor-{α} and n-3 polyunsaturated fatty acid treatment on liver injury. Am J Pathol 169, 846860.
50Schattenberg, J, Galle, P & Schuchmann, M (2006) Apoptosis in liver disease. Liver Int 26, 904911.
51Wang, D, Wei, Y & Pagliassotti, M (2006) Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 147, 943951.
52Brunt, EM (2004) Nonalcoholic steatohepatitis. Semin Liver Dis 24, 320.
53Bellentani, S, Saccoccio, G, Masutti, F, Corce, L, Brandi, G, Sasso, F, Cristanini, G & Tribelli, C (2000) Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann Intern Med 132, 112117.
54Bayard, M, Holt, J & Boroughs, E (2006) Nonalcoholic fatty liver disease. Am Fam Physician 73, 19611968.
55Marceau, P, Biron, S, Hould, FS, Marceau, S, Simard, S, Thung, SN & Kral, JG (1999) Liver pathology and the metabolic syndrome X in severe obesity. J Clin Endocrinol Metab 84, 15131517.
56Garofano, A, Czernichow, P & Bréant, B (1997) In utero undernutrition impairs β-cell development. Diabetologia 40, 12311234.
57Murphy, HC, Regan, G, Bogdarina, IG, et al. (2003) Fetal programming of perivenous glucose uptake reveals a regulatory mechanism governing hepatic glucose output during refeeding. Diabetes 52, 13261332.
58Festi, D, Colecchia, A, Sacco, T, Bondi, M, Roda, E & Marchesini, G (2004) Hepatic steatosis in obese patients: clinical aspects and prognostic significance. Obes Rev 5, 2742.
59Breier, BH, Vickers, MH, Ikenasio, BA, Chan, KY & Wong, WP (2001) Fetal programming of appetite and obesity. Mol Cell Endocrinol 185, 7379.
60Brunt, E, Janney, C, Di Bisceglie, A, Neuschwander-Tetri, B & Bacon, B (1999) Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lessions. Am J Gastroent 94, 24672474.
61Guzman, M, Klein, W, del Pulgar, TG & Geelen, MJ (1999) Metabolism of trans fatty acids by hepatocytes. Lipids 34, 381386.
62Milagro, FI, Campion, J & Martinez, JA (2006) Weight gain induced by high-fat feeding involves increased liver oxidative stress. Obesity 14, 11181123.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed