Skip to main content Accessibility help
×
Home

Hepatic fatty acid metabolism in rats fed diets with different contents of C18:0, C18:1cis and C18:1trans isomers

  • Anna M. Giudetti (a1), Anton C. Beynen (a2), Arnoldina G. Lemmens (a3), Gabriele V. Gnoni (a1) and Math J. H. Geelen (a2) (a4)...

Abstract

In the present study the effects of some C18 fatty acids on hepatic fatty acid metabolism have been compared. Male rats were fed cholesterol-free diets containing either C18:0, C18:1cis or C18:1trans isomers as the variables. In accordance with previous work, oleic acid in the diet caused an increase in cholesterol concentration in the liver and in the lipoprotein fraction of density (d; kg/l)<1·006. Oleic acid also reduced the triacylglycerol:cholesterol value in this fraction. Surprisingly, the C18:1trans isomers diet induced a decrease in the amount of cholesterol in total plasma as well as in the 1·019<d<1·063 lipoprotein fraction. Both oleic acid and C18:1trans isomers increased the concentration of triacylglycerols in the liver. The two C18:1 fatty acids differently influenced the hepatic activities of carnitine palmitoyltransferase-I and 3-hydroxy-acyl-CoA dehydrogenase; both enzymes were inhibited by C18:1trans isomers, while no change was induced by oleic acid. The activity of the citrate carrier was lower in the oleic acid- and C18:1trans isomers-fed rats, when compared with the rats fed stearic acid. No diet effects were seen for the activities of acetyl-CoA carboxylase, fatty acid synthase, diacylglycerol acyltransferase, citrate synthase and phosphofructokinase. The results are interpreted in that oleic acid raised liver triacylglycerol by reducing the secretion of it with the d<1·006 lipoprotein fraction whereas the C18:1trans isomers enhanced liver triacylglycerol by lowering the hepatic oxidation of fatty acids.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Hepatic fatty acid metabolism in rats fed diets with different contents of C18:0, C18:1cis and C18:1trans isomers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Hepatic fatty acid metabolism in rats fed diets with different contents of C18:0, C18:1cis and C18:1trans isomers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Hepatic fatty acid metabolism in rats fed diets with different contents of C18:0, C18:1cis and C18:1trans isomers
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Math J. H. Geelen, fax +31 302 531 817, email m.geelen@vet.uu.nl

References

Hide All
Bailey, NTJ (1995) Statistical Methods in Biology, 3rd ed., Cambridge, UK: Cambridge University Press.
Beynen, AC (1988) Dietary monounsaturated fatty acids and liver cholesterol. Artery 15, 170175.
Beynen, AC, Bogaard, A, Van Laack, HLJM & Katan, MB (1984) Cholesterol metabolism in two strains of rats with high or low responses to a cholesterol-rich diet. J Nutr 114, 16401651.
Bligh, EG & Dyer, WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911917.
Fritz, IB, Cheema-Dhadli, S, Taylor, WM, Morris, HP & Halperin, ML (1973) Inhibition of hepatic fatty acid synthesis by long-chain fatty acyl-CoA derivatives: role of the mitochondrial citrate transporter. Alfred Benzon Symposium VI1, 645652.
Geelen, MJH & Beynen, AC (2000) Consumption of olive oil has opposite effects on plasma total cholesterol and sphingomyelin concentrations in rats. Br J Nutr 83, 541547.
Geelen, MJH, Harris, RA, Beynen, AC & McCune, SA (1979) Short-term hormonal control of hepatic lipogenesis. Diabetes 29, 10061022.
Geelen, MJH, Schoots, WJ, Bijleveld, C & Beynen, AC (1995 a) Dietary medium-chain fatty acids raise and (n-3) polyunsaturated fatty acids lower hepatic triacylglycerol synthesis in rats. J Nutr 125, 24492456.
Geelen, MJH, Tijburg, LBM, Bouma, CJ & Beynen, AC (1995 b) Cholesterol consumption alters hepatic sphingomyelin metabolism in rats. J Nutr 125, 22942300.
Geelen, SNJ, Blázquez, C, Geelen, MJH, Sloet Van Oldruitenborgh-Oosterbaan, MM & Beynen, AC (2001) High fat intake lowers hepatic fatty acid synthesis and raises fatty acid oxidation in aerobic muscle in Shetland ponies. Br J Nutr 86, 3136.
Groot, PH, de Boer, BC, Haddeman, E, Houtsmuller, UM & Hulsmann, WC (1988) Effect of dietary fat composition on the metabolism of triacylglycerol-rich plasma lipoproteins in the postprandial phase in meal-fed rats. J Lipid Res 29, 541551.
Guzmán, M, Klein, W, Gómez del Pulgar, T & Geelen, MJH (1999) Metabolism of trans fatty acids by hepatocytes. Lipids 34, 381386.
Guzmán, M, Kolodziej, MP, Caldwell, A, Costorphine, CG & Zammit, VA (1994) Evidence against direct involvement of phosphorylation in the activation of carnitine palmitoyltransferase by okadaic acid in rat hepatocytes. Biochem J 300, 693699.
Haagsman, HP, de Haas, CGM, Geelen, MJH, Van Golde, LMG (1982) Regulation of triacylglycerol synthesis in the liver. J Biol Chem 257, 1059310598.
Hassid, WZ & Abraham, S (1957) Determination of glycogen. Methods Enzymol 3, 3450.
Katan, MB (1998) Health effects of trans fatty acids. Eur J Clin Invest 28, 257258.
Khosla, P & Hayes, KC (1996) Dietary trans -monounsaturated fatty acids negatively impact plasma lipids in humans: critical review of the evidence. J Am Coll Nutr 15, 325339.
Lawson, LD & Holman, RT (1981) Beta-oxidation of the geometric and positional isomers of octadecenoic acid by rat heart and liver mitochondria. Biochim Biophys Acta 665, 6065.
Lowry, OH, Rosebrough, NJ, Farr, AL & Randall, RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193, 265275.
Metcalfe, LD, Schmitz, AA & Pelka, JR (1966) Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Biochem 38, 514515.
Nelson, GJ (1998) Dietary fat, trans fat, and risk of coronary heart disease. Nutr Rev 56, 250252.
Palmieri, F, Stipani, I, Quagliariello, E & Klingeberg, M (1972) Kinetic study of the tricarboxylate carrier in rat-liver mitochondria. Eur J Biochem 26, 587594.
Schiller, CM, Taylor, WM & Halperin, ML (1974) Control of fatty acid synthesis in white adipose tissue by insulin: coordination between the mitochondrial citrate transporter and pyruvate dehydrogenase. Can J Biochem 52, 813821.
Smits, CHM, Moughan, PJ & Beynen, AC (2000) The inhibitory effect of a highly viscous carboxymethylcellulose on dietary fat digestibility in the growing chicken is dependent on the type of fat. J Anim Physiol Anim Nutr 83, 231238.
Sundler, R, Åkesson, B & Nilsson, Å (1974) Effect of different fatty acids on glycerolipid synthesis in isolated rat hepatocytes. J Biol Chem 249, 51025107.
Ten Hoor, F, Rietveld, WJ, Kooij, M & Flory, W (1980) Growth and 24 hour eating patterns of rats kept under various light:dark conditions. Lab Anim 14, 251252.
Terpstra, AHM, Woodward, CJH, Sanchez-Muniz, FJ (1981) Improved techniques for the separation of serum lipoproteins by density gradient ultracentrifugation: visualization by pre-staining and rapid separation of serum lipoproteins from small volumes of serum. Anal Biochem 111, 149157.
Tijburg, LBM, Maquedano, A, Bijleveld, C, Guzmán, M & Geelen, MJH (1988) Effects of ethanol feeding on hepatic lipid synthesis. Arch Biochem Biophys 267, 568579.
Verbeek, MJF, Van den Berg, GJ, Lemmens, AG & Beynen, AC (1993) High protein intake raises apparent but not true magnesium absorption in rats. J Nutr 123, 18801887.
Williams, B (1993) Biostatistics. In Concepts and Applications for Biologists. London, UK: Chapman & Hall.
Woldseth, B, Retterstol, K & Christopherson, BO (1998) Monounsaturated trans fatty acids, elaidic acid and trans-vaccenic acid, metabolism and incorporation in phospholipid molecular species in hepatocytes. Scand J Clin Lab Invest 58, 635645.
Zara, V & Gnoni, GV (1995) Effect of starvation on the activity of the mitochondrial tricarboxylate carrier. Biochim Biophys Acta 1239, 3338.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed