Skip to main content Accessibility help
×
Home

The gut microbiome of kittens is affected by dietary protein:carbohydrate ratio and associated with blood metabolite and hormone concentrations

  • Seema Hooda (a1), Brittany M. Vester Boler (a1), Katherine R. Kerr (a1), Scot E. Dowd (a2) and Kelly S. Swanson (a1)...

Abstract

High-protein, low-carbohydrate (HPLC) diets are common in cats, but their effect on the gut microbiome has been ignored. The present study was conducted to test the effects of dietary protein:carbohydrate ratio on the gut microbiota of growing kittens. Male domestic shorthair kittens were raised by mothers fed moderate-protein, moderate-carbohydrate (MPMC; n 7) or HPLC (n 7) diets, and then weaned at 8 weeks onto the same diet. Fresh faeces were collected at 8, 12 and 16 weeks; DNA was extracted, followed by amplification of the V4–V6 region of the 16S rRNA gene using 454 pyrosequencing. A total of 384 588 sequences (average of 9374 per sample) were generated. Dual hierarchical clustering indicated distinct clustering based on the protein:carbohydrate ratio regardless of age. The protein:carbohydrate ratio affected faecal bacteria. Faecal Actinobacteria were greater (P< 0·05) and Fusobacteria were lower (P< 0·05) in MPMC-fed kittens. Faecal Clostridium, Faecalibacterium, Ruminococcus, Blautia and Eubacterium were greater (P< 0·05) in HPLC-fed kittens, while Dialister, Acidaminococcus, Bifidobacterium, Megasphaera and Mitsuokella were greater (P< 0·05) in MPMC-fed kittens. Principal component analysis of faecal bacteria and blood metabolites and hormones resulted in distinct clusters. Of particular interest was the clustering of blood TAG with faecal Clostridiaceae, Eubacteriaceae, Ruminococcaceae, Fusobacteriaceae and Lachnospiraceae; blood ghrelin with faecal Coriobacteriaceae, Bifidobacteriaceae and Veillonellaceae; and blood glucose, cholesterol and leptin with faecal Lactobacillaceae. The present results demonstrate that the protein:carbohydrate ratio affects the faecal microbiome, and highlight the associations between faecal microbes and circulating hormones and metabolites that may be important in terms of satiety and host metabolism.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The gut microbiome of kittens is affected by dietary protein:carbohydrate ratio and associated with blood metabolite and hormone concentrations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The gut microbiome of kittens is affected by dietary protein:carbohydrate ratio and associated with blood metabolite and hormone concentrations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The gut microbiome of kittens is affected by dietary protein:carbohydrate ratio and associated with blood metabolite and hormone concentrations
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr K. S. Swanson, fax +1 217 333 7861, email ksswanso@illinois.edu

References

Hide All
1Hooper, LV, Wong, MH, Thelin, A, et al. (2001) Molecular analysis of commensal host–microbial relationships in the intestine. Science 291, 881884.
2Mackie, RI, Sghir, A & Gaskins, HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69, 1035S1045S.
3Gronlund, MM, Gueimonde, M, Laitinen, K, et al. (2007) Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin Exp Allergy 37, 17641772.
4Adlerberth, I (2008) Factors influencing the establishment of the intestinal microbiota in infancy. Nestle Nutr Workshop Ser Pediatr Program 62, 1329.
5Kalliomaki, M, Salminen, S & Isolauri, E (2008) Positive interactions with the microbiota: probiotics. Adv Exp Med Biol 635, 5766.
6Ritchie, LE, Steiner, JM & Suchodolski, JS (2008) Assessment of microbial diversity along the feline intestinal tract using 16S rRNA gene analysis. FEMS Microbiol Ecol 66, 590598.
7Handl, S, Dowd, SE, Garcia-Mazcorro, JF, et al. (2011) Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol Ecol 76, 301310.
8Barry, KA (2010) Indices of gut health and intestinal microbial ecology of the cat as affected by ingestion of select carbohydrates varying in fermentative capacity. PhD Thesis, University of Illinois.
9Janeczko, S, Atwater, D, Bogel, E, et al. (2008) The relationship of mucosal bacteria to duodenal histopathology, cytokine mRNA, and clinical disease activity in cats with inflammatory bowel disease. Vet Microbiol 128, 178193.
10Lubbs, DC, Vester, BM, Fastinger, N, et al. (2009) Dietary protein concentration affects intestinal microbiota of adult cats: a study using DGGE and qPCR to evaluate differences in microbial populations in the feline gastrointestinal tract. J Anim Physiol Anim Nutr 93, 113121.
11Vester, BM, Dalsing, BL, Middelbos, IS, et al. (2009) Faecal microbial populations of growing kittens fed high- or moderate-protein diets. Arch Anim 63, 254265.
12Vester, BM, Liu, KJ, Keel, TL, et al. (2009) In utero and postnatal exposure to a high-protein or high-carbohydrate diet leads to differences in adipose tissue mRNA expression and blood metabolites in kittens. Br J Nutr 102, 11361144.
13Yu, Z & Morrison, M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36, 808812.
14Cephas, KD, Kim, J, Mathai, RA, et al. (2011) Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing. PLoS One 6, e23503.
15Edgar, RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.
16Thompson, JD, Gibson, TJ, Plewniak, F, et al. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 48764882.
17Gontcharova, V, Youn, E, Wolcott, RD, et al. (2010) Black box chimera check (B2C2): a windows-based software for batch depletion of chimeras from bacterial 16S rRNA gene datasets. Open Microbiol J 4, 4752.
18Smith, DM, Snow, DE, Rees, E, et al. (2010) Evaluation of the bacterial diversity of pressure ulcers using bTEFAP pyrosequencing. BMC Med Genomics 3, 41.
19Kushner, RF & Doerfler, B (2008) Low-carbohydrate, high-protein diets revisited. Curr Opin Gastroenterol 24, 198203.
20Cebra, JJ (1999) Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69, 1046S1051S.
21Ritchie, LE, Burke, KF, Garcia-Mazcorro, JF, et al. (2010) Characterization of fecal microbiota in cats using universal 16S rRNA gene and group-specific primers for Lactobacillus and Bifidobacterium spp. Vet Microbiol 144, 140146.
22Middelbos, IS, Vester Boler, BM, Qu, A, et al. (2010) Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS One 5, e9768.
23Thompson-Chagoyan, OC, Maldonado, J & Gil, A (2007) Colonization and impact of disease and other factors on intestinal microbiota. Dig Dis Sci 52, 20692077.
24Inness, VL, McCartney, AL, Khoo, C, et al. (2007) Molecular characterisation of the gut microflora of healthy and inflammatory bowel disease cats using fluorescence in situ hybridisation with special reference to Desulfovibrio spp. J Anim Physiol Anim Nutr (Berl) 91, 4853.
25Magee, EA, Richardson, CJ, Hughes, R, et al. (2000) Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am J Clin Nutr 72, 14881494.
26Gill, CI & Rowland, IR (2002) Diet and cancer: assessing the risk. Br J Nutr 88, S73S87.
27Norat, T & Riboli, E (2001) Meat consumption and colorectal cancer: a review of epidemiologic evidence. Nutr Rev 59, 3747.
28Ramakrishna, BS, Roberts-Thomas, IC, Pannall, PR, et al. (1991) Impaired sulphation of phenol by the colonic mucosa in quiescent and active colitis. Gut 32, 4649.
29Loesche, WJ & Gibbons, RJ (1968) Amino acid fermentation by Fusobacterium nucleatum. Arch Oral Biol 3, 191202.
30Potrykus, J, White, RL & Bearne, SL (2008) Proteomic investigation of amino acid catabolism in the indigenous gut anaerobe Fusobacterium varium. Proteomics 8, 26912703.
31Swidsinski, A, Dorffel, Y, Loening-Baucke, V, et al. (2011) Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut 60, 3440.
32Bennett, KW & Eley, A (1993) Fusobacteria: new taxonomy and related diseases. J Med Microbiol 39, 246254.
33Suchodolski, JS (2011) Intestinal microbiota of dogs and cats: a bigger world than we thought. Vet Clin North Am Small Anim Pract 41, 261272.
34Kitahara, M, Takamine, F, Imamura, T, et al. (2001) Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7 alpha-dehydroxylating activity. Int J Syst Evol Microbiol 51, 3944.
35Reddy, BS, Simi, B, Patel, N, et al. (1996) Effect of amount and types of dietary fat on intestinal bacterial 7 alpha-dehydroxylase and phosphatidylinositol-specific phospholipase C and colonic mucosal diacylglycerol kinase and PKC activities during stages of colon tumor promotion. Cancer Res 56, 23142320.
36Elsayed, S & Zhang, K (2004) Human infection caused by Clostridium hathewayi. Emerg Infect Dis 10, 19501952.
37Woo, PC, Lau, SK, Woo, GK, et al. (2004) Bacteremia due to Clostridium hathewayi in a patient with acute appendicitis. J Clin Microbiol 42, 59475949.
38Warren, YA, Tyrrell, KL, Citron, DM, et al. (2006) Clostridium aldenense sp. nov. and Clostridium citroniae sp. nov. isolated from human clinical infections. J Clin Microbiol 44, 24162422.
39Louis, P, Duncan, SH, McCrae, SI, et al. (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186, 20992106.
40Freier, TA, Beitz, DC, Li, L, et al. (1994) Characterization of Eubacterium coprostanoligenes sp. nov., a cholesterol-reducing anaerobe. Int J Syst Bacteriol 44, 137142.
41Hashizume, K, Tsukahara, T, Yamada, K, et al. (2003) Megasphaera elsdenii JCM1772T normalizes hyperlactate production in the large intestine of fructooligosaccharide-fed rats by stimulating butyrate production. J Nutr 133, 31873190.
42Yoshida, Y, Tsukahara, T & Ushida, K (2009) Oral administration of Lactobacillus plantarum Lq80 and Megasphaera elsdenii iNP-001 induces efficient recovery from mucosal atrophy in the small and the large intestines of weaning piglets. Anim Sci J 80, 709715.
43Su, Y, Yao, W, Perez-Gutierrez, ON, et al. (2008) Changes in abundance of Lactobacillus spp. and Streptococcus suis in the stomach, jejunum and ileum of piglets after weaning. FEMS Microbiol Ecol 66, 546555.
44Konstantinov, SR, Awati, AA, Williams, BA, et al. (2006) Post-natal development of the porcine microbiota composition and activities. Environ Microbiol 8, 11911199.
45Scharek, L, Guth, J, Reiter, K, et al. (2005) Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Vet Immunol Immunopathol 105, 151161.
46Hacin, B, Rogelj, I & Matijasic, BB (2008) Lactobacillus isolates from weaned piglets' mucosa with inhibitory activity against common porcine pathogens. Folia Microbiol (Praha) 53, 569576.
47Spencer, RJ & Chesson, A (1994) The effect of Lactobacillus spp. on the attachment of enterotoxigenic Escherichia coli to isolated porcine enterocytes. J Appl Bacteriol 77, 215220.
48Siggers, RH, Siggers, J, Boye, M, et al. (2008) Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs. J Nutr 138, 14371444.
49Banks, WA (2001) Leptin transport across the blood-brain barrier: implications for the cause and treatment of obesity. Curr Pharm Des 7, 125133.
50Pereira, DI & Gibson, GR (2002) Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit Rev Biochem Mol Biol 37, 259281.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed