Skip to main content Accessibility help
×
Home

Grape seed extract supplementation attenuates the heat stress-induced responses of jejunum epithelial cells in Simmental × Qinchuan steers

  • Xiaomin Li (a1), You Yang (a1), Shimin Liu (a2), Jing Yang (a1), Cheng Chen (a1) and Zhihong Sun (a1)...

Abstract

Grape seed extract (GSE), a rich source of polyphenols, is reported to possess antioxidant, anti-inflammatory and immunomodulatory properties. The objective of the present study was to determine whether GSE could attenuate the heat stress-induced responses of jejunum epithelial cells (JEC) in cattle. The JEC of a steer (Simmental ×  Qinchuan) were exposed to heat stress for 2 h in the absence (0 μg/ml) or presence (10, 20, 40 and 80 μg/ml) of GSE in the culture medium. When cultured at 40°C, JEC supplemented with GSE exhibited increased glutathione peroxidase activity (P= 0·04), viability (P= 0·004), and mRNA expression of epidermal growth factor (EGF; P= 0·03) and EGF receptor (EGFR; P= 0·01). Under the same conditions, the cells exhibited decreased mRNA expression of IL-8 (P= 0·01) and TNF-α (P= 0·03) and decreased protein concentrations of IL-1β (P= 0·02), Toll-like receptor 4 (TLR4; P= 0·04) and heat shock protein 70 (HSP70; P< 0·001). When cultured at 43°C, JEC supplemented with GSE exhibited increased catalase activity (P= 0·04), viability (P< 0·001), and mRNA expression of EGF (P< 0·001) and EGFR (P< 0·001) and decreased protein concentrations of IL-1β (P< 0·001), TLR4 (P= 0·03) and HSP70 (P< 0·001), as well as mRNA expression of IL-8 (P< 0·001), TLR4 (P= 0·002) and TNF-α (P< 0·001). Temperature × GSE concentration interactions were also observed for the concentrations of IL-1β (P< 0·001), IL-8 (P< 0·001), TNF-α (P= 0·01) and HSP70 (P= 0·04) and viability (P< 0·001) of JEC. The results of the present study indicate that GSE can attenuate the responses of JEC induced by heat stress within a certain range of temperatures.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Grape seed extract supplementation attenuates the heat stress-induced responses of jejunum epithelial cells in Simmental × Qinchuan steers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Grape seed extract supplementation attenuates the heat stress-induced responses of jejunum epithelial cells in Simmental × Qinchuan steers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Grape seed extract supplementation attenuates the heat stress-induced responses of jejunum epithelial cells in Simmental × Qinchuan steers
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Z. Sun, fax +86 23 68251196, email sunzh2002cn@aliyun.com

References

Hide All
1 Silanikove, N (2000) Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest Prod Sci 67, 118.
2 Baumgard, RP & Rhoads, LH (2013) Effects of heat stress on postabsorptive metabolism and energetics. Annu Rev Anim Biosci 1, 311337.
3 Mujahid, A, Pumford, NR, Bottje, W, et al. (2007) Mitochondrial oxidative damage in chicken skeletal muscle induced by acute heat stress. J Poult Sci 44, 439445.
4 Sahin, K, Sahin, N, Kucuk, O, et al. (2009) Role of dietary zinc in heat-stressed poultry: a review. Poult Sci 88, 21762183.
5 Rhoads, ML, Kim, JW, Collier, RJ, et al. (2010) Effects of heat stress and nutrition on lactating Holstein cows: II. Aspects of hepatic growth hormone responsiveness. J Dairy Sci 93, 170179.
6 Baumgart, DC & Dignass, AU (2002) Intestinal barrier function. Curr Opin Clin Nutr Metab Care 5, 685694.
7 Adkins, B, Jones, M, Bu, YR, et al. (2004) Neonatal tolerance revisited again: specific CTL priming in mouse neonates exposed to small numbers of semi- or fully allogeneic spleen cells. Eur J Immunol 34, 19011909.
8 Bailey, M, Haverson, K, Inman, C, et al. (2005) The development of the mucosal immune system pre- and post-weaning: balancing regulatory and effector function. Proc Nutr Soc 64, 451457.
9 Lambert, GP (2009) Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J Anim Sci 87, E101E108.
10 Yan, Y, Zhao, Y, Wang, H, et al. (2006) Pathophysiological factors underlying heatstroke. Med Hypotheses 67, 609617.
11 Hall, DM, Buettner, GR, Oberley, LW, et al. (2001) Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am J Physiol Heart Circ Physiol 280, H509H521.
12 Liu, F, Yin, J, Du, M, et al. (2009) Heat-stress-induced damage to porcine small intestinal epithelium associated with downregulation of epithelial growth factor signaling. J Anim Sci 87, 19411949.
13 Boudry, G, Péron, V, Huërou-Luron, IL, et al. (2004) Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J Nutr 134, 22562262.
14 Lallès, JP, Bosi, P, Smidt, H, et al. (2007) Weaning – a challenge to gut physiologists. Livest Sci 108, 8293.
15 Beede, DK & Collier, RJ (1986) Potential nutritional strategies for intensively managed cattle during thermal stress. J Anim Sci 62, 543–554.
16 Carstens, GE, Johnson, DE & Ellenberger, MA (1989) Energy metabolism and composition of gain in beef steers exhibiting normal and compensatory growth. In Energy Metabolism of Farm Animals, pp. 131134 [Van Der Honing, Y and Close, WH, editors]. Pudoc, Wageningen: European Association for Animal Production, Publication no. 43.
17 Weiss, WP, Hogan, JS, Todhunter, DA, et al. (1997) Effect of vitamin E supplementation in diets with a low concentration of selenium on mammary gland health of dairy cows. J Dairy Sci 80, 17281737.
18 Sejian, V, Singh, AK, Sahoo, A, et al. (2013) Effect of mineral mixture and antioxidant supplementation on growth, reproductive performance and adaptive capability of Malpura ewes subjected to heat stress. J Anim Physiol Anim Nutr 95, 252258.
19 Santos Buelgo, C & Scalbert, A (2000) Proanthocyanidins and tannin-like compounds – nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric 80, 10941117.
20 Arnous, A & Meyer, AS (2008) Comparison of methods for compositional characterization of grape (Vitis vinifera L.) and apple (Malus domestica) skins. Food Bioprod Process 86, 7986.
21 Caillet, S, Salmiéri, S & Lacroix, M (2006) Evaluation of free radical-scavenging properties of commercial grape phenol extracts by a fast colorimetric method. Food Chem 95, 18.
22 Uchida, S, Edamatsu, R, Hiramatsu, M, et al. (1987) Condensed tannins scavenge active oxygen radicals. Med Sci Res 15, 831832.
23 Yilmaz, Y & Toledo, RT (2004) Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem 52, 255260.
24 Katiyar, SK (2008) Grape seed proanthocyanidins and skin cancer prevention: inhibition of oxidative stress and protection of immune system. Mol Nutr Food Res 52, S71S76.
25 Sun, ZH, Zhang, QL, He, ZX, et al. (2010) Research on primary culture method for ruminal epithelial and jejunum epithelial cells of goats. Chin J Anim Nutr 22, 602610.
26 Kaur, M, Singh, RP, Gu, M, et al. (2006) Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells. Clin Cancer Res 12, 61946202.
27 Roy, AM, Baliga, MS, Elmets, CA, et al. (2005) Grape seed proanthocyanidins induce apoptosis through p53, Bax, and caspase 3 pathways. Neoplasia 7, 2436.
28 Byth, HA, Mchunu, BI, Dubery, IA, et al. (2001) Assessment of a simple, non-toxic Alamar Blue cell survival assay to monitor tomato cell viability. Phytochem Anal 12, 340346.
29 Willard, HH, Merritt, LL, Dean, JA, et al. (1981) Ultraviolet and visible absorption methods. In Instrumental Methods of Analysis, 6th ed., pp. 66104 [Willard, HH, Merrit, LL, Dean, JA and Settle, FA, editors]. New York, NY: Van Nostrand.
30 Góth, L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196, 143151.
31 Tang, LJ, Tian, FZ & Gao, XM (2002) Hepatocellular glycogen in alleviation of liver ischemia–reperfusion injury. Hepatob Pancreat Dis Int 1, 532535.
32 Islam, SN, Hossain, KJ, Kamal, M, et al. (2004) Serum immunoglobulins and white blood cells status of drug addicts: influence of illicit drugs and sex habit. Addict Biol 9, 2733.
33 Murthi, P, Fitzpatrick, E, Borg, AJ, et al. (2008) GAPDH, 18S rRNA and YWHAZ are suitable endogenous reference genes for relative gene expression studies in placental tissues from human idiopathic fetal growth restriction. Placenta 29, 798801.
34 Livak, KJ & Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCt method. Methods 25, 402408.
35 Manach, C, Williamson, G, Morand, C, et al. (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81, Suppl. 1, S230S242.
36 Rios, LY, Bennett, RN, Lazarus, SA, et al. (2002) Cocoa procyanidins are stable during gastric transit in humans. Am J Clin Nutr 76, 11061110.
37 Serra, A, Macià, A, Romero, MP, et al. (2010) Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models. Br J Nutr 103, 944952.
38 Martin, KR & Appel, CL (2010) Polyphenols as dietary supplements: a double-edged sword. Nutr Dietary Suppl 2, 112.
39 Serra, A, Bryant, N, Motilva, MJ, et al. (2012) Fetal programming of dietary fructose and saturated fat on hepatic quercetin glucuronidation in rats. Nutrition 28, 11651171.
40 Fang, YZ, Yang, S & Wu, GY (2002) Free radicals, antioxidants, and nutrition. Nutrition 18, 872879.
41 Burke, NC, Scaglia, G, Saker, KE, et al. (2007) Influence of endophyte consumption and heat stress on intravaginal temperatures, plasma lipid oxidation, blood selenium, and glutathione redox of mononuclear cells in heifers grazing tall fescue. J Anim Sci 85, 29322940.
42 Lord-Fontaine, S & Averill-Bates, DA (2002) Heat shock inactivates cellular antioxidant defenses against hydrogen peroxide: protection by glucose. Free Radic Biol Med 32, 752765.
43 Lin, H, De Vos, D, Decuypere, E, et al. (2008) Dynamic changes in parameters of redox balance after mild heat stress in aged laying hens (Gallus gallus domesticus). Comp Biochem Physiol C Toxicol Pharmacol 147, 3035.
44 Lin, H, Decuypere, E & Buyse, J (2006) Acute heat stress induces oxidative stress in broiler chickens. Comp Biochem Physiol A Mol Integr Physiol 144, 1117.
45 Wang, LF, Lin, H, Yang, QM, et al. (2002) The effect of dietary vitamin A levels on lipid peroxidatic reaction of inoculated and heat stressed laying hens. Acta Vet Zootech Sinica 33, 443447.
46 Sahin, K, Onderci, M, Sahin, N, et al. (2003) Dietary vitamin C and folic acid supplementation ameliorates the detrimental effects of heat stress in Japanese quail. J Nutr 133, 18821886.
47 Mujahid, A, Yoshiki, Y, Akiba, Y, et al. (2005) Superoxide radical production in chicken skeletal muscle induced by acute heat stress. Poult Sci 84, 307314.
48 Payne, RL & Southern, LL (2005) Comparison of inorganic and organic selenium sources for broilers. Poult Sci 84, 898902.
49 Meyer, AS, Yi, OS, Pearson, DA, et al. (1997) Inhibition of human low-density lipoprotein oxidation in relation to composition of phenolic antioxidants in grapes (Vitis vinifera). J Agric Food Chem 45, 16381643.
50 Sato, M, Ramarathnam, N, Suzuki, Y, et al. (1996) Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem 44, 3741.
51 Pastrana-Bonilla, E, Akoh, CC, Sellappan, S, et al. (2003) Phenolic content and antioxidant capacity of muscadine grapes. J Agric Food Chem 51, 54975503.
52 Ahn, HS, Jeon, TI, Lee, JY, et al. (2002) Antioxidative activity of persimmon and grape seed extract: in vitro and in vivo . Nutr Res 22, 12651273.
53 Chis, IC, Ungureanu, MI, Marton, A, et al. (2009) Antioxidant effects of a grape seed extract in a rat model of diabetes mellitus. Diab Vasc Dis Res 6, 200204.
54 Carpenter, R, O'Grady, MN, O'Callaghan, YC, et al. (2007) Evaluation of the antioxidant potential of grape seed and bearberry extracts in raw and cooked pork. Meat Sci 76, 604610.
55 Lau, DW & King, J (2003) Pre- and post-mortem use of grape seed extract in dark poultry meat to inhibit development of thiobarbituric acid reactive substances. J Agric Food Chem 51, 16021607.
56 Mielnik, MB, Aaby, K & Skrede, G (2003) Commercial antioxidants control lipid oxidation in mechanically deboned turkey meat. Meat Sci 65, 11471155.
57 Faria, A, Mateus, N, de Freitas, V, et al. (2006) Modulation of MPP+ uptake by procyanidins in Caco-2 cells: involvement of oxidation/reduction reactions. FEBS Lett 580, 155160.
58 Soobrattee, MA, Neergheena, VS, Luximon-Rammaa, A, et al. (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mut Res Fund Mol Mech Mutagen 579, 200213.
59 Amico, V, Chillemi, R, Mangiafico, S, et al. (2008) Polyphenol-enriched fractions from Sicilian grape pomace: HPLC–DAD analysis and antioxidant activity. Bioresour Technol 99, 59605966.
60 Maier, T, Schieber, A, Kammerer, DR, et al. (2009) Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem 112, 551559.
61 Monagas, M, Hernández-Ledesma, B, Garrido, P, et al. (2005) Quality assessment of commercial dietary antioxidant products from Vitis vinifera L. grape seeds. Nutr Cancer 53, 244254.
62 Braunstein, J, Qiao, L, Autschbach, F, et al. (1997) T cells of the human intestinal lamina propria are high producers of interleukin-10. Gut 41, 215220.
63 Cario, E & Podolsky, DK (2000) Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68, 70107017.
64 Cario, E, Brown, D, McKee, M, et al. (2002) Commensal-associated molecular patterns induce selective Toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Pathol 160, 165173.
65 Gewirtz, AT, Navas, TA, Lyons, S, et al. (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167, 18821885.
66 Maaser, C & Kagnoff, MF (2002) Role of the intestinal epithelium in orchestrating innate and adaptive mucosal immunity. Z Gastroenterol 40, 525529.
67 Bouchama, A, Roberts, G, Al Mohanna, F, et al. (2005) Inflammatory, hemostatic, and clinical changes in a baboon experimental model for heatstroke. J Appl Physiol 98, 697705.
68 Leon, LR, Blaha, MD & DuBose, DA (2006) Time course of cytokine, corticosterone, and tissue injury responses in mice during heat strain recovery. J Appl Physiol 100, 14001409.
69 Wang, Q, Guo, XL & Noel, G (2007) Heat shock stress ameliorates cytokine mixture-induced permeability by downregulating the nitric oxide and signal transducer and activator of transcription pathways in Caco-2 cells. Shock 27, 179185.
70 Hu, S, Claud, ECEC, Musch, MW, et al. (2010) Stress granule formation mediates the inhibition of colonic Hsp70 translation by interferon-γ and tumour necrosis factor-α. Am J Physiol Gastrointest Liver Physiol 298, G481G492.
71 Chacóna, MR, Ceperuelo-Mallafré, V, Maymó-Masipa, E, et al. (2009) Grape-seed procyanidins modulate inflammation on human differentiated adipocytes in vitro . Cytokine 47, 137142.
72 Panico, AM, Cardile, V, Avondo, S, et al. (2006) The in vitro effect of a lyophilized extract of wine obtained from Jacquez grapes on human chondrocytes. Phytomedicine 13, 522526.
73 Terra, X, Montagut, G, Bustos, M, et al. (2009) Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J Nutr Biochem 20, 210218.
74 Bralley, EE, Hargrove, JL, Greenspan, P, et al. (2007) Topical anti-inflammatory activities of Vitis rotundifolia (muscadine grape) extracts in the tetradecanoylphorbol acetate model of ear inflammation. J Med Food 10, 636642.
75 Helmrath, MA, Shin, CE & Erwin, CR (1998) Intestinal adaptation is enhanced by epidermal growth factor independent of increased ileal epidermal growth factor receptor expression. J Pediatr Surg 33, 980985.
76 Nair, RR, Warner, BB & Warner, BW (2008) Role of epidermal growth factor and other growth factors in the prevention of necrotizing enterocolitis. Semin Perinatol 32, 107113.
77 Bagchi, D, Bagchi, M, Stohs, SJ, et al. (2000) Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology 148, 187197.
78 Sharma, G, Tyagi, AK, Singh, RP, et al. (2004) Synergistic anti-cancer effects of grape seed extract and conventional cytotoxic agent doxorubicin against human breast carcinoma cells. Breast Cancer Res Treat 85, 112.
79 Meeran, SM & Katiyar, SK (2007) Grape seed proanthocyanidins promote apoptosis in human epidermoid carcinoma A431 cells through alterations in Cdki–Cdk–cyclin cascade, and caspase-3 activation via loss of mitochondrial membrane potential. Exp Dermatol 16, 405415.
80 Deane, EE & Woo, NYS (2005) Cloning and characterization of the hsp70 multigene family from silver sea bream: modulated gene expression between warm and cold temperature acclimation. Biochem Biophys Res Commun 330, 776783.
81 Tyagi, A, Agarwal, R & Agarwal, C (2003) Grape seed extract inhibits EGF-induced and constitutively active mitogenic signaling but activates JNK in human prostate carcinoma DU145 cells: possible role in antiproliferation and apoptosis. Oncogene 22, 13021316.
82 Staib, JL, Quindry, JC, French, JP, et al. (2007) Increased temperature, not cardiac load, activates heat shock transcription factor 1 and heat shock protein 72 expression in the heart. Am J Physiol Regul Integr Comp Physiol 292, R432R439.
83 Kampinga, HH (1993) Thermotolerance in mammalian cells. Protein denaturation and aggregation, and stress proteins. J Cell Sci 104, 1117.
84 Wischmeyer, PE, Musch, MW, Madonna, MB, et al. (1997) Glutamine protects intestinal epithelial cells: role of inducible HSP70. Am J Physiol 272, G879G884.
85 Ren, H, Musch, MW, Kojima, K, et al. (2001) Short fatty acids induce intestinal epithelial heat shock protein 25 and IEC 18 cells. Gastroenterology 121, 631639.
86 Ohkawara, T, Nishihira, J, Takeda, H, et al. (2006) Protective effect of geranylgeranylacetone on trinitrobenzene sulfonic acid-induced colitis in mice. Int J Mol Med 17, 229234.
87 Fu, MH & Tupling, AR (2009) Protective effects of Hsp70 on the structure and function of SERCA2a expressed in HEK-293 cells during heat stress. Am J Physiol Heart Circ Physiol 296, H1175H1183.
88 Kim, H, Deshane, J, Barnes, S, et al. (2006) Proteomics analysis of the actions of grape seed extract in rat brain: technological and biological implications for the study of the actions of psychoactive compounds. Life Sci 78, 20602065.
89 Du, J, Di, H-S, Guo, L, et al. (2008) Hyperthermia causes bovine mammary epithelial cell death by a mitochondrial-induced pathway. J Therm Biol 33, 3747.
90 Cui, YT, Liu, B, Xie, J, et al. (2013) The effect of hyperthermia on cell viability, oxidative damage, and heat shock protein expression in hepatic cells of grass carp (Ctenopharyngodon idellus). J Thermal Biol 38, 355361.
91 Iwagami, Y (1996) Changes in the ultrastructure of human cells related to certain biological responses under hyperthermic culture conditions. Hum Cell 9, 353366.
92 Sahin, K, Orhan, C, Akdemir, F, et al. (2011) Tomato powder supplementation activates Nrf-2 via ERK/Akt signaling pathway and attenuates heat stress-related responses in quails. Anim Feed Sci Technol 165, 230237.
93 Martín, , Ramos, S, Cordero-Herrero, I, et al. (2013) Cocoa phenolic extract protects pancreatic beta cells against oxidative stress. Nutrients 5, 29552968.
94 Pedersen, GBJ & Saermark, T (2002) Phenol toxicity and conjugation in human colonic epithelial cells. Scand J Gastroenterol 37, 7479.
95 McCall, IC, Betanzos, A, Weber, DA, et al. (2009) Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization. Toxicol Appl Pharmacol 241, 6170.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed