Skip to main content Accessibility help
×
Home

Grape juice concentrate prevents oxidative DNA damage in peripheral blood cells of rats subjected to a high-cholesterol diet

  • Odair Aguiar (a1), Andréa Pittelli Boiago Gollücke (a2), Bárbara Bueno de Moraes (a1), Gabriela Pasquini (a1), Rodrigo Ramos Catharino (a3), Maria Francesca Riccio (a3), Silvia Saiuli Miki Ihara (a4) and Daniel Araki Ribeiro (a1) (a4)...

Abstract

The goal of the present study was to investigate whether subchronic treatment with grape juice concentrate is able to protect liver and peripheral blood cells against cholesterol-induced injury in rats. The effects of the grape juice concentrate treatment on histopathological changes, immunohistochemistry for cyclo-oxygenase-2 (COX-2), and basal and oxidative DNA damage induced by H2O2 using a single-cell gel (comet) assay were evaluated. Male Wistar rats (n 18) were divided into three groups: group 1 – negative control; group 2 – cholesterol at 1 % (w/w) in their diet, treated for 5 weeks; group 3 – cholesterol at 1 % in their chow, treated for 5 weeks, and grape juice concentrate at 222 mg/d in their drinking-water in the final week only. The results indicated that the treatment with grape juice concentrate did not show remarkable differences regarding liver tissue in group 3 compared with group 2. However, grape juice concentrate was able to decrease oxidative DNA damage induced by H2O2 in peripheral blood cells, as depicted by the tail moment results. COX-2 expression in the liver did not show statistically significant differences (P>0·05) between groups. Taken together, the present results suggest that the administration of subchronic grape juice concentrate prevents oxidative DNA damage in peripheral blood cells.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Grape juice concentrate prevents oxidative DNA damage in peripheral blood cells of rats subjected to a high-cholesterol diet
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Grape juice concentrate prevents oxidative DNA damage in peripheral blood cells of rats subjected to a high-cholesterol diet
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Grape juice concentrate prevents oxidative DNA damage in peripheral blood cells of rats subjected to a high-cholesterol diet
      Available formats
      ×

Copyright

Corresponding author

*Professor D. A. Ribeiro, fax +55 1332232592, email daribeiro@unifesp.br; daribeiro@pesquisador.cnpq.br

References

Hide All
1Lippi, G, Franchini, G & Favaloro, G (2010) Moderate red wine consumption and cardiovascular disease risk, beyond the ‘French paradox’. Semin Thromb Hemost 36, 5970.
2Libby, P (1995) Molecular bases of the acute coronary syndromes. Circulation 91, 28442850.
3Arts, IC & Hollman, PC (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81, 317S325S.
4Beecher, GR (2003) Overview of dietary flavonoids, nomenclature occurrence and intake. J Nutr 133, 3248S3254S.
5Scalbert, A, Johnson, IT & Saltmarsh, M (2005) Polyphenols, antioxidants and beyond. Am J Clin Nutr 81, 215S217S.
6Dani, C, Oliboni, LS, Umezu, FM, et al. (2009) Antioxidant and antigenotoxic activities of purple grape juice – organic and conventional – in adult rats. J Med Food 12, 11111118.
7Nichols, JA & Katiyar, SK (2001) Skin photoprotection by natural polyphenols, anti-inflammatory antioxidant and DNA repair mechanisms. Arch Dermatol Res 302, 7183.
8Vitseva, O, Varghese, S, Chakrabarti, S, et al. (2005) Grape seed and skin extracts inhibit platelet function and release of reactive oxygen intermediates. J Cardiovasc Pharmacol 46, 445451.
9Sharma, SD, Meeran, SM & Katiyar, SK (2007) Dietary grape seed proanthocyanidins inhibit UVB-induced oxidative stress and activation of mitogen-activated protein kinases and nuclear factor-kappaB signaling in in vivo SKH-1 hairless mice. Mol Cancer Ther 6, 9951005.
10Nishi, EE, Campos, RR, Bergamaschi, CT, et al. (2010) Vitamin C prevents DNA damage induced by renovascular hypertension in multiple organs of Wistar rats. Human Exp Toxicol 29, 593599.
11Bruttos, JB, Bergamaschi, CT, Ribeiro, DA, et al. (2009) Cardioprotective actions of ascorbic acid during isoproterenol-induced acute myocardial infarction in rats. Pharmacology 84, 2937.
12Ribeiro, DA, Campos, RR & Bergamaschi, CT (2009) Chronic renal failure induces genetic instability in multiple organs of Wistar rats. Eur J Clin Invest 39, 289295.
13Tudek, B, Winczura, A, Janik, J, et al. (2010) Involvement of oxidatively damaged DNA and repair in cancer development and aging. Am J Transl Res 2, 254284.
14Day, AP, Kemp, HJ, Bolton, C, et al. (1997) Effect of concentrated red grape juice consumption on serum antioxidant capacity and low-density lipoprotein oxidation. Ann Nutr Metab 41, 353357.
15Ye, Y, Martinez, JD, Perez-Polo, RJ, et al. (2008) The role of eNOS, iNOS and NF-kappaB in upregulation and activation of cyclooxygenase-2 and infarct size reduction by atorvastatin. Am J Physiol Heart Circ Physiol 295, H343H351.
16Kim, M, Murakami, A, Miyamoto, S, et al. (2010) The modifying effects of green tea polyphenols on acute colitis and inflammation-associated colon carcinogenesis in male ICR mice. Biofactors 36, 4351.
17Catharino, RR, Cunha, IBS, Fogaça, A, et al. (2006) Characterization of must and wine of six varieties of grapes by direct infusion electrospray ionization mass spectrometry. J Mass Spect 41, 185190.
18Gollucke, AP, Catharino, RB, Souza, JC, et al. (2009) Evolution of major phenolic components and radical scavenging activity of grape juices through concentration process and storage. Food Chem 112, 868873.
19Beseler, L (1999) Effects on behavior and cognition, diet and artificial colors flavors and preservatives. Int Pediatr 14, 4143.
20Manzoni, MS, Rossi, EA, Carlos, IZ, et al. (2005) Fermented soy product supplemented with isoflavones affected fat depots in juvenile rats. Nutrition 21, 10181024.
21Andersen, ML, Ribeiro, DA, Alvarenga, TA, et al. (2010) Are endogenous sex hormones related to DNA damage in paradoxically sleep-deprived female rats? Horm Behav 57, 216221.
22Gollucke, AP, Souza, JC & Tavares, DQ (2008) +-Catechin and − -epicatechin levels of concentrated and ready-to-drink grape juices through storage. Int J Food Sci Technol 43, 18551859.
23ADA American Dietetic Association (2004) Position of the American Dietetic Association: functional foods. J Am Diet Assoc 104, 814826.
24Singleton, VL & Rossi, JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic 16, 144158.
25Brand-Williams, W, Cuvelier, ME & Berset, C (1995) Use of free radical method to evaluate antioxidant activity. Lebensm Wissensch Technol 28, 2530.
26Kim, D-O, Lee, KW, Lee, HJ, et al. (2002) Vitamin C equivalent capacity VCEAC of phenolic phytochemicals. J Agric Food Chem 50, 37133717.
27Zhang, XG, Xu, P, Liu, Q, et al. (2006) Effect of tea polyphenol on cytokine gene expression in rats with alcoholic liver disease. Hepatobiliary Pancreat Dis Int 5, 268272.
28Saran, R, Tiwari, RK, Reddy, PP, et al. (2008) Risk assessment of oral cancer in patients with pre-cancerous states of the oral cavity using micronucleus test and challenge assay. Oral Oncol 44, 354360.
29Tice, RR, Agurell, E, Anderson, D, et al. (2000) Single-cell gel/comet assay guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35, 206221.
30Hartmann, A, Agurell, E, Beevers, C, et al. (2000) Recommendations for conducting the in vivo comet assay. Mutagenesis 28, 4551.
31Fracalossi, AC, Miranda, SR, Oshima, CT, et al. (2010) The role of matrix metalloproteinases 2 and 9 during rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide. J Mol Histol 41, 1925.
32Mandukhail, SU, Aziz, N & Gilani, AH (2010) Studies on antidyslipidemic effects of Morinda citrifolia (Noni) fruit, leaves and root extracts. Lipids Health Dis 9, 88.
33Cheik, NC, Rossi, EA, Guerra, RL, et al. (2008) Effects of a ferment soy product on the adipocyte area reduction and dyslipidemia control in hypercholesterolemic adult male rats. Lipids Health Dis 7, 50.
34Yoggeta, SK, Gnanapragasam, A, Kumar, SS, et al. (2006) Synergistic interactions of ferulic acid with ascorbic acid its cardioprotective role during isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 283, 139146.
35Park, YK, Park, E, Kim, JS, et al. (2003) Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans. Mutat Res 529, 7786.
36Castilla, P, Echarri, R, Davalos, A, et al. (2006) Concentrated red grape juice exerts antioxidant hypolipidemic and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am J Clin Nutr 84, 252262.
37Fujita, N, Miyachi, H, Tanaka, H, et al. (2009) Iron overload is associated with hepatic oxidative damage to DNA in nonalcoholic steatohepatitis. Cancer Epidemiol Biomarkers Prev 18, 424432.
38Rho, KA & Kim, MK (2006) Effects of different grape formulations on antioxidative capacity lipid peroxidation and oxidative DNA damage in aged rats. J Nutr Sci Vitaminol (Tokyo) 52, 3346.
39Castilla, P, Davalos, A, Teruel, JL, et al. (2008) Comparative effects of dietary supplementation with red grape juice and vitamin E on production of superoxide by circulating neutrophil NADPH oxidase in hemodialysis patients. Am J Clin Nutr 8, 10531061.
40Azmi, AS, Bhat, SH, Hadi, SM, et al. (2005) Resveratrol-CuII induced DNA breakage in human peripheral lymphocytes, implications for anticancer properties. FEBS Lett 579, 31313135.
41Speit, S, Hanelt, S, Helbigm, R, et al. (1996) Detection of DNA effects in human cells with the comet assay and their relevance for mutagenesis. Toxicol Lett 88, 9198.
42Morillas-Ruiz, JM, Villegas Garcia, JA, Lopez, FL, et al. (2006) Effects of polyphenolic antioxidants on exercise-induced oxidative stress. Clin Nutr 25, 444453.
43Hebbar, V, Shen, G, Hu, R, et al. (2005) Toxicogenomics of resveratrol in rat liver. Life Sci 176, 22992314.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed