Skip to main content Accessibility help
×
Home

Five-week dietary exposure to dry diets alters the faecal bacterial populations in the domestic cat (Felis catus)

  • Emma N. Bermingham (a1), Sandra Kittelmann (a2), Gemma Henderson (a2), Wayne Young (a1), Nicole C. Roy (a1) (a3) and David G. Thomas (a4)...

Abstract

The effects of wet (canned) or dry (kibbled) diets on faecal bacterial populations in the cat were investigated in eight domestic short-haired cats (four males and four females; averaging 6 years of age and 3·4 kg) in a nested design. The cats were fed ad libitum a commercially available wet diet (moisture 82·0 %, crude protein 51·7 %, fat 28·9 %, carbohydrate (CHO) 8·9 % and ash 10·6 % DM) for 5 weeks. On the fifth week, individual feed intakes and faecal outputs were determined. Fresh faecal samples were collected twice daily, mixed for homogeneity, subsampled and stored at − 85°C until analysis. The cats were then switched to a commercially available dry diet (moisture 8·5 %, crude protein 33·0 %, fat 11·0 %, CHO 49·4 % and ash 6·6 % DM) for 5 weeks, and fresh faeces were sampled as described previously. Energy intake tended to be higher in cats fed dry diets (P < 0·10), but body weight was similar between the two feeding periods (P>0·05). Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes amplified from DNA extracted from faeces was performed. The unweighted pair group method with arithmetic mean cluster analysis of bacterial community profiles using Pearson's correlation revealed diet-specific clustering when the same cats were fed on either a dry or a wet diet (dissimilarity between the groups, 88·6 %; P < 0·001). Subsequent cloning and sequencing of five selected distinct DGGE bands indicated that members of the Pelomonas and Fusobacteriaceae were influenced by a short-term change in diet format. This suggests that 5-week dietary exposure is sufficient to alter gastrointestinal microflora.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Five-week dietary exposure to dry diets alters the faecal bacterial populations in the domestic cat (Felis catus)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Five-week dietary exposure to dry diets alters the faecal bacterial populations in the domestic cat (Felis catus)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Five-week dietary exposure to dry diets alters the faecal bacterial populations in the domestic cat (Felis catus)
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: E. N. Bermingham, fax +64 6 351 8003, email emma.bermingham@agresearch.co.nz

References

Hide All
1Scarlett, JM, Donoghue, S, Saidla, J, et al. (1994) Overweight cats: prevalence and risk factors. Int J Obes Relat Metab Disord 18, S22S28.
2German, AJ (2006) The growing problem of obesity in dogs and cats. J Nutr 136, S1940S1946.
3de-Oliveira, LD, Carciofi, AC, Oliveira, MC, et al. (2008) Effects of six carbohydrate sources on diet digestibility and postprandial glucose and insulin responses in cats. J Anim Sci 86, 22372246.
4Weidgraaf, K, Tucker, LA & Thomas, DG (2007) A link between diet form and weight change in domestic cats (Felis catus)? Asia Pac J Clin Nutr 16, S110.
5Vester, BM, Liu, KJ, Keel, TL, et al. (2009) In utero and postnatal exposure to a high-protein or high-carbohydrate diet leads to differences in adipose tissue mRNA expression and blood metabolites in kittens. Br J Nutr 102, 11361144.
6Simpson, SJ & Raubenheimer, D (2005) Obesity: the protein leverage hypothesis. Obes Rev 6, 133142.
7Kienzle, E (1993) Carbohydrate metabolism of the cat. 1. Activity of amylase in the gastrointestinal tract of the cat. J Anim Physiol Anim Metab 69, 91101.
8Kienzle, E (1994) Effect of carbohydrates on digestion in the cat. J Nutr 124, 2568S2571S.
9Lubbs, DC, Vester, BM, Fastinger, ND, et al. (2009) Dietary protein concentration affects intestinal microbiota of adult cats: a study using DGGE and qPCR to evaluate differences in microbial populations in the feline gastrointestinal tract. J Anim Physiol Anim Nutr 93, 113121.
10Vester, BM, Dalsing, BL, Middelbos, IS, et al. (2009) Faecal microbial populations of growing kittens fed high- or moderate-protein diets. Arch Anim Nutr 63, 254265.
11Barry, KA, Wojcicki, BJ, Middelbos, IS, et al. (2010) Dietary cellulose, fructooligosaccharides, and pectin modify fecal protein catabolites and microbial populations in adult cats. J Anim Sci 88, 29782987.
12Bueno, AR, Cappel, TG, Sunvold, GD, et al. (2000) Feline colonic microbes and fatty acid transport: effects of feeding cellulose, beet pulp and pectin/gum arabic fibers. Nutr Res 20, 13191328.
13AAFCO (2009) Official Publication. Atlanta, GA: Association of American Feed Control Officials.
14Kittelmann, S & Janssen, PH (2010) Characterisation of rumen ciliate community composition in domestic sheep, deer, and cattle feeding on varying diets, by means of PCR-DGGE and clone libraries. FEMS Microbiol Ecol 75, 468481.
15Tannock, GW (2000) The intestinal microflora: potentially fertile ground for microbial physiologists. Adv Microb Physiol 42, 2546.
16Knoch, B, Nones, K, Barnett, MPG, et al. (2010) Diversity of cecal bacteria is altered in interleukin-10 gene-deficient mice before and after colitis onset and when fed polyunsaturated fatty acids. Microbiology 156, Pt 11, 33063316.
17Altschul, SF, Gish, W, Miller, W, et al. (1990) Basic local alignment search tool. J Mol Biol 215, 403410.
18Ritchie, LE, Steiner, JM & Suchodolski, JS (2008) Assessment of microbial diversity along the feline intestinal tract using 16S rRNA gene analysis. FEMS Microbiol Ecol 66, 590598.
19Ritchie, LE, Burke, KF, Garcia-Mazcorro, JF, et al. (2010) Characterization of fecal microbiota in cats using universal 16S rRNA gene and group-specific primers for Lactobacillus and Bifidobacterium spp. Vet Microbiol 144, 104114.
20Laflamme, DP (2008) Letter to the Editor: cats and carbohydrates. Top Companion Anim Med 23, 159160.
21Turnbaugh, PJ, Hamady, M, Yatsunenko, T, et al. (2009) A core gut microbiome in obese and lean twins. Nature 457, 480484.
22Turnbaugh, PJ, Ley, RE, Mahowald, MA, et al. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 10271031.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed