Skip to main content Accessibility help
×
Home

Expression of the candidate fat taste receptors in human fungiform papillae and the association with fat taste function

  • Dongli Liu (a1) (a2), Andrew Costanzo (a1), Margaret D. M. Evans (a3), Nicholas S. Archer (a4), Caryl Nowson (a5), Konsta Duesing (a2) and Russell Keast (a1)...

Abstract

Significant experimental evidence supports fat as a taste modality; however, the associated peripheral mechanisms are not well established. Several candidate taste receptors have been identified, but their expression pattern and potential functions in human fungiform papillae remain unknown. The aim of this study is to identify the fat taste candidate receptors and ion channels that were expressed in human fungiform taste buds and their association with oral sensory of fatty acids. For the expression analysis, quantitative RT-PCR (qRT-PCR) from RNA extracted from human fungiform papillae samples was used to determine the expression of candidate fatty acid receptors and ion channels. Western blotting analysis was used to confirm the presence of the proteins in fungiform papillae. Immunohistochemistry analysis was used to localise the expressed receptors or ion channels in the taste buds of fungiform papillae. The correlation study was analysed between the expression level of the expressed fat taste receptors or ion channels indicated by qRT-PCR and fat taste threshold, liking of fatty food and fat intake. As a result, qRT-PCR and western blotting indicated that mRNA and protein of CD36, FFAR4, FFAR2, GPR84 and delayed rectifying K+ channels are expressed in human fungiform taste buds. The expression level of CD36 was associated with the liking difference score (R −0·567, β=−0·04, P=0·04) between high-fat and low-fat food and FFAR2 was associated with total fat intake (ρ=−0·535, β=−0·01, P=0·003) and saturated fat intake (ρ=−0·641, β=−0·02, P=0·008).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Expression of the candidate fat taste receptors in human fungiform papillae and the association with fat taste function
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Expression of the candidate fat taste receptors in human fungiform papillae and the association with fat taste function
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Expression of the candidate fat taste receptors in human fungiform papillae and the association with fat taste function
      Available formats
      ×

Copyright

Corresponding author

* Corresponding authors: Dr K. Duesing, email konsta.duesing@csiro.au; Professor R. Keast, email russell.keast@deakin.edu.au

References

Hide All
1. Chaudhari, N & Roper, SD (2010) The cell biology of taste. J Cell Biol 190, 285296.
2. Chalé-Rush, A, Burgess, JR & Mattes, RD (2007) Evidence for human orosensory (taste?) sensitivity to free fatty acids. Chem Senses 32, 423431.
3. Stewart, JE, Feinle-Bisset, C, Golding, M, et al. (2010) Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br J Nutr 104, 145152.
4. Keast, RS & Costanzo, A (2015) Is fat the sixth taste primary? Evidence and implications. Flavour 4, 1.
5. Running, CA, Craig, BA & Mattes, RD (2015) Oleogustus: the unique taste of fat. Chem Senses 40, 507516.
6. Liu, D, Archer, N, Duesing, K, et al. (2016) Mechanism of fat taste perception: association with diet and obesity. Prog Lipid Res 63, 4149.
7. Baillie, A, Coburn, C & Abumrad, N (1996) Reversible binding of long-chain fatty acids to purified FAT, the adipose CD36 homolog. J Membr Biol 153, 7581.
8. Laugerette, F, Passilly-Degrace, P, Patris, B, et al. (2005) CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 115, 31773184.
9. Briscoe, CP, Tadayyon, M, Andrews, JL, et al. (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278, 1130311311.
10. Kotarsky, K, Nilsson, NE, Flodgren, E, et al. (2003) A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun 301, 406410.
11. Brown, AJ, Goldsworthy, SM, Barnes, AA, et al. (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278, 1131211319.
12. Wang, J, Wu, X, Simonavicius, N, et al. (2006) Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem 281, 3445734464.
13. Liu, L, Hansen, DR, Kim, I, et al. (2005) Expression and characterization of delayed rectifying K+ channels in anterior rat taste buds. Am J Physiol Cell Physiol 289, C868C880.
14. Gilbertson, TA, Liu, L, York, DA, et al. (1998) Dietary fat preferences are inversely correlated with peripheral gustatory fatty acid sensitivity. Ann N Y Acad Sci 855, 165168.
15. Chandrashekar, J, Hoon, MA, Ryba, NJP, et al. (2006) The receptors and cells for mammalian taste. Nature 444, 288294.
16. Mattes, RD (2009) Oral thresholds and suprathreshold intensity ratings for free fatty acids on 3 tongue sites in humans: implications for transduction mechanisms. Chem Senses 34, 415423.
17. Febbraio, M, Hajjar, DP & Silverstein, RL (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108, 785791.
18. Pepino, MY, Love-Gregory, L, Klein, S, et al. (2012) The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J Lipid Res 53, 561566.
19. Mizak, I, Sery, O, Plesnik, J, et al. (2015) The A allele of cluster of differentiation 36 (CD36) SNP 1761667 associates with decreased lipid taste perception in obese Tunisian women. Br J Nutr 113, 13301337.
20. Sayed, A, Sery, O, Plesnik, H, et al. (2015) CD36 AA genotype is associated with decreased lipid taste perception in young obese, but not lean, children. Int J Obes 39, 920924.
21. Melis, M, Sollai, G, Muroni, P, et al. (2015) Associations between orosensory perception of oleic acid, the common single nucleotide polymorphisms (rs1761667 and rs1527483) in the CD36 gene, and 6-n-propylthiouracil (PROP) tasting. Nutrients 7, 20682084.
22. Kles, KA & Chang, EB (2006) Short-chain fatty acids impact on intestinal adaptation, inflammation, carcinoma, and failure. Gastroenterology 130, S100S105.
23. Galindo, MM, Voigt, N, Stein, J, et al. (2011) G protein-coupled receptors in human fat taste perception. Chem Senses 37, 123139.
24. Gilbertson, T, Leonardelli, M & Wolf, R (2010) Optimizing blown film line layouts for improved surface treating performance. J Plast Film Sheeting 26, 83104.
25. Running, CA & Hayes, JE (2016) Individual differences in multisensory flavor perception. In Multisensory Flavor Perception, pp. 185210 [B Piqueras-Fiszman and C Spence, editors]. Boston, MA: Elsevier.
26. Hayes, JE, Feeney, EL & Allen, AL (2013) Do polymorphisms in chemosensory genes matter for human ingestive behavior? Food Qual Prefer 30, 202216.
27. Tepper, BJ & Nurse, RJ (1997) Fat perception is related to PROP taster status. Physiol Behav 61, 949954.
28. Tepper, BJ & Nurse, RJ (1998) PROP taster status is related to fat perception and preference. Ann N Y Acad Sci 855, 802804.
29. Hayes, JE & Duffy, VB (2007) Revisiting sugar–fat mixtures: sweetness and creaminess vary with phenotypic markers of oral sensation. Chem Senses 32, 225236.
30. Drewnowski, A, Henderson, SA & Barratt-Fornell, A (1998) Genetic sensitivity to 6-n-propylthiouracil and sensory responses to sugar and fat mixtures. Physiol Behav 63, 771777.
31. Lim, J, Urban, L & Green, BG (2008) Measures of individual differences in taste and creaminess perception. Chem Senses 33, 493501.
32. Heinze, JM, Preissl, H, Fritsche, A, et al. (2015) Controversies in fat perception. Physiol Behav 152, 479493.
33. Kamerud, JK & Delwiche, JF (2007) Individual differences in perceived bitterness predict liking of sweeteners. Chem Senses 32, 803810.
34. Keast, RS & Roper, J (2007) A complex relationship among chemical concentration, detection threshold, and suprathreshold intensity of bitter compounds. Chem Senses 32, 245253.
35. Yackinous, C & Guinard, J-X (2001) Relation between PROP taster status and fat perception, touch, and olfaction. Physiol Behav 72, 427437.
36. Miller, IJ & Reedy, FE (1990) Variations in human taste bud density and taste intensity perception. Physiol Behav 47, 12131219.
37. Zuniga, JR, Davis, SH, Englehardt, RA, et al. (1993) Taste performance on the anterior human tongue varles with fungiform taste bud density. Chem Senses 18, 449460.
38. Zhang, G, Zhang, H, Wang, X, et al. (2008) The relationship between fungiform papillae density and detection threshold for sucrose in the young males. Chem Senses 34, 9399.
39. Bokor, S, Legry, V, Meirhaeghe, A, et al. (2010) Single‐nucleotide polymorphism of CD36 locus and obesity in European adolescents. Obesity 18, 13981403.
40. Heni, M, Mussig, K, Machicao, F, et al. (2011) Variants in the CD36 gene locus determine whole‐body adiposity, but have no independent effect on insulin sensitivity. Obesity 19, 10041009.
41. Ichimura, A, Hirasawa, A, Poulain-Godefroy, O, et al. (2012) Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483, 350.
42. Waguri, T, Goda, T, Kasezawa, N, et al. (2013) The combined effects of genetic variations in the GPR120 gene and dietary fat intake on obesity risk. Biomed Res 34, 6974.
43. Love-Gregory, L, Sherva, R, Schappe, T, et al. (2011) Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum Mol Genet 20, 193201.
44. Vestmar, MA, Andersson, EA, Christensen, CR, et al. (2016) Functional and genetic epidemiological characterisation of the FFAR4 (GPR120) p. R270H variant in the Danish population. J Med Genet 53, 616623.
45. Heinze, JM, Costanzo, A, Baselier, I, et al. (2018) Detection thresholds for four different fatty stimuli are associated with increased dietary intake of processed high-caloric food. Appetite 123, 713.
46. Asano, M, Hong, G, Matsuyama, Y, et al. (2016) Association of oral fat sensitivity with body mass index, taste preference, and eating habits in healthy Japanese young adults. Tohoku J Exp Med 238, 93103.
47. Martínez-Ruiz, NR, Lopez-Diaz, JA, Wall-Medrano, A, et al. (2014) Oral fat perception is related with body mass index, preference and consumption of high-fat foods. Physiol Behav 129, 3642.
48. Stewart, JE, Seimon, RV, Otto, B, et al. (2011) Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. Am J Clin Nutr 93, 703711.
49. Narukawa, M, Kurokawa, A, Kohta, R, et al. (2017) Participation of the peripheral taste system in aging-dependent changes in taste sensitivity. Neuroscience 358, 249.
50. Spielman, AI, Pepino, MY, Feldman, R, et al. (2010) Technique to collect fungiform (taste) papillae from human tongue. J Vis Exp 42, e2201.
51. Archer, NS, Liu, D, Shaw, J, et al. (2016) A comparison of collection techniques for gene expression analysis of human oral taste tissue. PLOS ONE 11, e0152157.
52. LifeTechnologies (2010) TRIzol Reagent. Carlsbad, CA: Life Technologies.
53. Hummon, AB, Lim, SR, Difilippantonio, MJ, et al. (2007) Isolation and solubilization of proteins after TRIzol® extraction of RNA and DNA from patient material following prolonged storage. Biotechniques 42, 467.
54. Department of Health and Ageing (2010) User Guide 2007 Australian National Children’s Nutrition and Physical Activity Survey. Canberra: Commonwealth Government.
55. Haryono, RY, Sprajcer, MA & Keast, RS (2014) Measuring oral fatty acid thresholds, fat perception, fatty food liking, and papillae density in humans. J Vis Exp 88, 112.
56. Costanzo, A, Orellana, L, Nowson, C, et al. (2017) Fat taste sensitivity is associated with short-term and habitual fat intake. Nutrients 9, 781.
57. Simons, PJ, Kummer, JA, Luiken, JFP, et al. (2011) Apical CD36 immunolocalization in human and porcine taste buds from circumvallate and foliate papillae. Acta Histochem 113, 839843.
58. Ozdener, MH, Subramaniam, S, Sundaresan, S, et al. (2014) CD36-and GPR120-mediated Ca2+ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology 146, 9951005.e5.
59. Cortés, A, Mellombo, M, Mgone, C, et al. (2005) Adhesion of Plasmodium falciparum-infected red blood cells to CD36 under flow is enhanced by the cerebral malaria-protective trait South–East Asian ovalocytosis. Mol Biochem Parasitol 142, 252257.
60. Laugerette, F, Passilly-Degrace, P, Patris, B, et al. (2005) CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 115, 3177.
61. Itoh, Y, Kawamata, Y, Harada, M, et al. (2003) Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature 422, 173176.
62. Cartoni, C, Yasumatsu, K, Ohkuri, T, et al. (2010) Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci 30, 83768382.
63. Yousefi, S, Cooper, PR, Potter, SL, et al. (2001) Cloning and expression analysis of a novel G-protein-coupled receptor selectively expressed on granulocytes. J Leukoc Biol 69, 10451052.
64. Inada, H, Kawabata, F, Ishimaru, Y, et al. (2008) Off‐response property of an acid‐activated cation channel complex PKD1L3–PKD2L1. EMBO Rep 9, 690697.
65. Ishii, S, Misaka, T, Kishi, M, et al. (2009) Acetic acid activates PKD1L3–PKD2L1 channel – a candidate sour taste receptor. Biochem Biophys Res Commun 385, 346350.
66. Pluznick, JL (2014) ‘Extra’ sensory perception: the role of Gpr receptors in the kidney. Curr Opin Nephrol Hypertens 23, 507.
67. Nilsson, NE, Kotarsky, K, Owman, C, et al. (2003) Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 303, 10471052.
68. Senga, T, Iwamoto, S, Yoshida, T, et al. (2003) LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3. Blood 101, 11851187.
69. Le Poul, E, Loison, C, Struyf, S, et al. (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278, 2548125489.
70. Drewnowski, A (1985) Food perceptions and preferences of obese adults: a multidimensional approach. Int J Obes 9, 201212.
71. Risso, DS, Giuliani, C, Antinucci, M, et al. (2017) A bio-cultural approach to the study of food choice: the contribution of taste genetics, population and culture. Appetite 114, 240.
72. Abdoul-Azize, S, Selvakumar, S, Sadou, H, et al. (2014) Ca2+ signaling in taste bud cells and spontaneous preference for fat: unresolved roles of CD36 and GPR120. Biochimie 96, 813.
73. Gilbertson, TA & Khan, NA (2014) Cell signaling mechanisms of oro-gustatory detection of dietary fat: advances and challenges. Progr Lipid Res 53, 8292.

Keywords

Type Description Title
WORD
Supplementary materials

Liu et al. supplementary material
Liu et al. supplementary material 1

 Word (343 KB)
343 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed