Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T10:26:24.378Z Has data issue: false hasContentIssue false

Estimated polyphenol intake and major food sources of the Brazilian population: changes between 2008–2009 and 2017–2018

Published online by Cambridge University Press:  07 October 2022

Renata A. Carnauba*
Affiliation:
Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil Food Research Center, CEPID-FAPESP (Research Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
Flavia M. Sarti
Affiliation:
Center for Research in Complex Systems Modeling, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
Neuza M. A. Hassimotto
Affiliation:
Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil Food Research Center, CEPID-FAPESP (Research Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
Franco M. Lajolo
Affiliation:
Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil Food Research Center, CEPID-FAPESP (Research Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
*
* Corresponding author: Dr R. A. Carnauba, email rcarnauba@usp.br

Abstract

Assessing the dietary intake of polyphenols and their major food sources is the first step towards documenting the associations with health outcomes. Considering recent changes in dietary patterns of the Brazilian population, continuous monitoring of polyphenol intake is important. Thus, the present study was conducted to estimate the polyphenol intake and major food sources in the diet of the Brazilian population using data from the most recent National Dietary Survey (NDS, 2017–2018), to characterise the intake changes according to demographic characteristics and to compare the intake over the past decade in Brazil. Data from two cross-sectional population-based surveys were analyzed in the study. Trends in polyphenol intake and major food sources were estimated using food consumption data from NDS 2008–2009 (n 34 003) and 2017–2018 (n 46 164). The median (25–75th percentiles) of energy-adjusted polyphenol intake in 2017–2018 was 216·3 mg (125·3–495·2 mg) per 1000 kcal/d (4184 kJ/d), representing an increase of 12·3 mg/d from 2008–2009. However, unadjusted polyphenol intakes were similar between the surveys (medians: 364·3 mg/d in 2008–2009 and 366·9 mg/d in 2017–2018). The main food sources of total and polyphenol intake classes presented some variations between 2008–2009 and 2017–2018, with greater contribution of beans preparations, salads and tea to polyphenol intake, and decrease of orange contribution. Our study provided an updated information on polyphenol intake and its major food sources. The median intake remains lower than the reported by other populations. Furthermore, the results may contribute to future studies investigating temporal trends in polyphenol intake and disease risk.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Del Bo’, C, Bernardi, S, Marino, M, et al. (2019) Systematic review on polyphenol intake and health outcomes: is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients 11, 1355.Google ScholarPubMed
Costa, C, Tsatsakis, A, Mamoulakis, C, et al. (2017) Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem Toxicol 110, 286299.CrossRefGoogle ScholarPubMed
Cassidy, A, Bertoia, M, Chiuve, S, et al. (2016) Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am J Clin Nutr 104, 587594.CrossRefGoogle ScholarPubMed
Cassidy, A, Mukamal, KJ, Liu, L, et al. (2013) High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 127, 188196.CrossRefGoogle Scholar
Rienks, J, Barbaresko, J, Oluwagbemigun, K, et al. (2018) Polyphenol exposure and risk of type 2 diabetes: dose-response meta-analyses and systematic review of prospective cohort studies. Am J Clin Nutr 108, 4961.CrossRefGoogle ScholarPubMed
Laouali, N, Berrandou, T, Rothwell, J, et al. (2020) Profiles of polyphenol intake and type 2 diabetes risk in 60,586 women followed for 20 years: results from the E3N cohort study. Nutrients 12, 1934.CrossRefGoogle ScholarPubMed
Shishtar, E, Rogers, GT, Blumberg, JB, et al. (2020) Long-term dietary flavonoid intake and risk of Alzheimer disease and related dementias in the Framingham offspring cohort. Am J Clin Nutr 112, 343353.CrossRefGoogle ScholarPubMed
Godos, J, Caraci, F, Micek, A, et al. (2021) Dietary phenolic acids and their major food sources are associated with cognitive status in older Italian adults. Antioxidants 10, 700.CrossRefGoogle ScholarPubMed
Fike, LT, Munro, H, Yu, D, et al. (2022) Dietary polyphenols and the risk of colorectal cancer in the prospective Southern community cohort study. Am J Clin Nutr 115, 11551165.CrossRefGoogle ScholarPubMed
Zamora-Ros, R, Cayssials, V, Jenab, M, et al. (2018) Dietary intake of total polyphenol and polyphenol classes and the risk of colorectal cancer in the European prospective investigation into cancer and nutrition (EPIC) cohort. Eur J Epidemiol 33, 10631075.CrossRefGoogle ScholarPubMed
Lin, Y, Yngve, A, Lagergren, J, et al. (2014) A dietary pattern rich in lignans, quercetin and resveratrol decreases the risk of oesophageal cancer. Br J Nutr 112, 20022009.CrossRefGoogle Scholar
Yates, AA, Dwyer, JT, Erdman, JW, et al. (2021) Perspective: framework for developing recommended intakes of bioactive dietary substances. Adv Nutr 12, 10871099.CrossRefGoogle ScholarPubMed
Wallace, TC, Blumberg, JB, Johnson, EJ, et al. (2015) Dietary bioactives: establishing a scientific framework for recommended intakes. Adv Nutr 6, 14.CrossRefGoogle ScholarPubMed
Carnauba, RA, Hassimotto, NMA & Lajolo, FM (2021) Estimated dietary polyphenol intake and major food sources of the Brazilian population. Br J Nutr 126, 441448.CrossRefGoogle ScholarPubMed
Santos, IKSD & Conde, WL (2020) Trend in dietary patterns among adults from Brazilian state capitals. Rev Bras Epidemiol 23, e200035.CrossRefGoogle ScholarPubMed
Moshfegh, AJ, Rhodes, DG, Baer, DJ, et al. (2008) The US department of agriculture automated multiple-pass method reduces bias in the collection of energy intakes. Am J Clin Nutr 88, 324332.CrossRefGoogle ScholarPubMed
Neveu, V, Perez-Jiménez, J, Vos, F, et al. (2010) Phenol-explorer: an online comprehensive database on polyphenol contents in foods. Database 2010, bap024.CrossRefGoogle ScholarPubMed
Coelho, KS, Bistriche, EG, Grande, F, et al. (2019) 12th IFDC 2017 special issue – Brazilian food composition table (TBCA): development and functionalities of the online version. J Food Compos Anal 84, 103287.CrossRefGoogle Scholar
Rothwell, JA, Perez-Jimenez, J, Neveu, V, et al. (2013) Phenol-explorer 3.0: a major update of the phenol-explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, bat070.CrossRefGoogle Scholar
Verly, E, Marchioni, DM, Araujo, MC, et al. (2021) Evolution of energy and nutrient intake in Brazil between 2008–2009 and 2017–2018. Rev Saúde Pública 55, Suppl. 1, 5s.Google Scholar
Witkowska, AM, Zujko, ME, Waśkiewicz, A, et al. (2015) Comparison of various databases for estimation of dietary polyphenol intake in the population of Polish adults. Nutrients 7, 92999308.CrossRefGoogle ScholarPubMed
Pérez-Jiménez, J, Fezeu, L, Touvier, M, et al. (2011) Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr 93, 12201228.CrossRefGoogle ScholarPubMed
Ovaskainen, ML, Torronen, R, Koponen, JM, et al. (2008) Dietary intake and major food sources of polyphenols in Finnish adults. J Nutr 138, 562566.CrossRefGoogle ScholarPubMed
Huang, Q, Braffett, BH, Simmens, SJ, et al. (2020) Dietary polyphenol intake in US adults and 10-year trends: 2007–2016. J Acad Nutr Diet 120, 18211833.CrossRefGoogle ScholarPubMed
Zamora-Ros, R, Biessy, C, Rothwell, JA, et al. (2018) Dietary polyphenol intake and their major food sources in the Mexican teachers’ cohort. Br J Nutr 120, 353360.CrossRefGoogle ScholarPubMed
World Health Organization (2013) Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020. Geneva: World Health Organization.Google Scholar
Tresserra-Rimbau, A, Medina-Remón, A, Pérez-Jiménez, J, et al. (2013) Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: the PREDIMED study. Nutr Metab Cardiovasc Dis 23, 953959.CrossRefGoogle Scholar
Zamora-Ros, R, Knaze, V, Rothwell, JA, et al. (2016) Dietary polyphenol intake in Europe: the European prospective investigation into cancer and nutrition (EPIC) study. Eur J Nutr 55, 13591375.CrossRefGoogle ScholarPubMed
Instituto Brasileiro de Geografia e Estatística (2020) Pesquisas de Orçamentos Familiares 2017–2018: Análise do Consumo Alimentar Pessoal no Brasil (2017–2018 Family Budget Surveys: Analysis of Personal Food Consumption in Brazil). Rio de Janeiro: Ministério do Planejamento, Orçamento e Gestão, IBGE.Google Scholar
Ziauddeen, N, Rosi, A, Del Rio, D, et al. (2018) Dietary intake of (poly)phenols in children and adults: cross-sectional analysis of UK national diet and nutrition survey rolling programme (2008–2014). Eur J Nutr 58, 31833198.CrossRefGoogle ScholarPubMed
Karam, J, Bibiloni, MDM & Tur, (2018) Polyphenol estimated intake and dietary sources among older adults from Mallorca Island. PLOS ONE 13, E0191573.CrossRefGoogle ScholarPubMed
Kuczmarski, MF, Sebastian, RS, Goldman, JD, et al. (2018) Dietary flavonoid intakes are associated with race but not income in an urban population. Nutrients 10, 1749.CrossRefGoogle Scholar
Kim, K, Vance, TM & Chun, OK (2015) Estimated intake and major food sources of flavonoids among US adults: changes between 1999–2002 and 2007–2010 in NHANES. Eur J Nutr 55, 833843.CrossRefGoogle ScholarPubMed
Supplementary material: File

Carnauba et al. supplementary material

Figure S1 and Tables S1-S2

Download Carnauba et al. supplementary material(File)
File 51.8 KB