Skip to main content Accessibility help
×
Home

Erythrocyte phospholipid molecular species and fatty acids of Down syndrome children compared with non-affected siblings

  • Allain A. Bueno (a1), Annette Brand (a2), Marita M. Neville (a3), Catherine Lehane (a3), Nina Brierley (a4) and Michael A. Crawford (a5)...

Abstract

The majority of children with Down syndrome (DS) develop Alzheimer's disease (AD) at an early age. Although long-chain n-3 fatty acids (FA) are protective of neurodegeneration, little is known about the FA status in DS. In the present study, we aimed to investigate whether children with DS presented altered plasma and erythrocyte membrane phospholipids (PL) FA composition, when compared with their non-affected siblings. Venous blood samples were analysed for plasma and erythrocyte membrane FA composition by TLC followed by GC techniques. Lipid molecular species were determined by electrospray ionisation/tandem MS (ESI-MS/MS). FA analysis measured by standard GC showed an increased concentration of MUFA and a decreased concentration of plasmalogens in major PL fractions, but there were no differences in the concentrations of arachidonic acid or DHA. However, as identified by ESI-MS/MS, children with DS had increased levels of the following erythrocyte PL molecular species: 16 : 0–16 : 0, 16 : 0–18 : 1 and 16 : 0–18 : 2n-6, with reduced levels of 16 : 0–20 : 4n-6 species. Children with DS presented significantly higher levels of MUFA in both plasma and erythrocyte membrane, as well as higher levels of saturated and monounsaturated molecular species. Of interest was the almost double proportion of 16 : 0–18 : 2n-6 and nearly half the proportion of 16 : 0–20 : 4n-6 of choline phosphoacylglycerol species in children with DS compared with their non-affected siblings. These significant differences were only revealed by ESI-MS/MS and were not observed in the GC analysis. Further investigations are needed to explore molecular mechanisms and to test the association between the pathophysiology of DS and the risk of AD.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Erythrocyte phospholipid molecular species and fatty acids of Down syndrome children compared with non-affected siblings
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Erythrocyte phospholipid molecular species and fatty acids of Down syndrome children compared with non-affected siblings
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Erythrocyte phospholipid molecular species and fatty acids of Down syndrome children compared with non-affected siblings
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Professor M. A. Crawford, fax +44 20 8846 7892, email michael.crawford@imperial.ac.uk

References

Hide All
1 Devlin, L & Morrison, PJ (2004) Accuracy of the clinical diagnosis of Down syndrome. Ulster Med J 73, 412.
2 Newberger, DS (2000) Down syndrome: prenatal risk assessment and diagnosis. Am Fam Physician 62, 825832, 837–838.
3 Harman, D (2002) Alzheimer's disease: role of aging in pathogenesis. Ann N Y Acad Sci 959, 384395 (discussion 463–465).
4 Zigman, WB & Lott, IT (2007) Alzheimer's disease in Down syndrome: neurobiology and risk. Ment Retard Dev Disabil Res Rev 13, 237246.
5 Mehta, PD, Capone, G, Jewell, A, et al. (2007) Increased amyloid beta protein levels in children and adolescents with Down syndrome. J Neurol Sci 254, 2227.
6 Schupf, N, Patel, B, Pang, D, et al. (2007) Elevated plasma beta-amyloid peptide Abeta(42) levels, incident dementia, and mortality in Down syndrome. Arch Neurol 64, 10071013.
7 Muchová, J, Sustrová, M, Garaiová, I, et al. (2001) Influence of age on activities of antioxidant enzymes and lipid peroxidation products in erythrocytes and neutrophils of Down syndrome patients. Free Radic Biol Med 31, 499508.
8 Ordonez, FJ, Rosety-Plaza, M & Rosety-Rodriguez, M (2006) Glucose-6-phosphatedehydrogenase is also increased in erythrocytes from adolescents with Down syndrome. Downs Syndr Res Pract 11, 8487.
9 Schweber, MS (1989) Alzheimer's disease and Down syndrome. Prog Clin Biol Res 317, 247267.
10 Lott, IT & Head, E (2001) Down syndrome and Alzheimer's disease: a link between development and aging. Ment Retard Dev Disabil Res Rev 7, 172178.
11 Jovanovic, SV, Clements, D & MacLeod, K (1998) Biomarkers of oxidative stress are significantly elevated in Down syndrome. Free Radic Biol Med 25, 10441048.
12 Percy, ME, Dalton, AJ, Markovic, VD, et al. (1990) Red cell superoxide dismutase, glutathione peroxidase and catalase in Down syndrome patients with and without manifestations of Alzheimer disease. Am J Med Genet 35, 459467.
13 Pastor, MC, Sierra, C, Doladé, M, et al. (1998) Antioxidant enzymes and fatty acid status in erythrocytes of Down's syndrome patients. Clin Chem 44, 924929.
14 Yavin, E, Brand, A & Green, P (2002) Docosahexaenoic acid abundance in the brain: a biodevice to combat oxidative stress. Nutr Neurosci 5, 149157.
15 Sinclair, AJ & Crawford, MA (1972) Low-fat diets and the survival of newborn rats. Biochem J 126, 18P19P.
16 Liu, Q, Smith, MA, Avilá, J, et al. (2005) Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations. Free Radic Biol Med 38, 746754.
17 Bazan, NG (2005) Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol 15, 159166.
18 Lukiw, WJ & Bazan, NG (2008) Docosahexaenoic acid and the aging brain. J Nutr 138, 25102514.
19 Samieri, C, Féart, C, Letenneur, L, et al. (2008) Low plasma eicosapentaenoic acid and depressive symptomatology are independent predictors of dementia risk. Am J Clin Nutr 88, 714721.
20 Palacios-Pelaez, R, Lukiw, WJ & Bazan, NG (2010) Omega-3 essential fatty acids modulate initiation and progression of neurodegenerative disease. Mol Neurobiol 41, 367374.
21 Bakan, E, Yildirim, A, Kurtul, N, et al. (2006) Effects of type 2 diabetes mellitus on plasma fatty acid composition and cholesterol content of erythrocyte and leukocyte membranes. Acta Diabetol 43, 109113.
22 Younsi, M, Quilliot, D, Al-Makdissy, N, et al. (2002) Erythrocyte membrane phospholipid composition is related to hyperinsulinemia in obese nondiabetic women: effects of weight loss. Metabolism 51, 12611268.
23 De Franceschi, L, Olivieri, O & Corrocher, R (2004) Erythrocyte aging in neurodegenerative disorders. Cell Mol Biol (Noisy-le-grand) 50, 179185.
24 Thiel, R & Fowkes, SW (2005) Can cognitive deterioration associated with Down syndrome be reduced? Med Hypotheses 64, 524532.
25 McCance, RA, Widdowson, EM, Holland, B, et al. (1991) Ministry of Agriculture, Royal Society of Chemistry, McCance and Widdowson's The Composition of Foods, 5th ed. Cambridge: Royal Society of Chemistry and Ministry of Agriculture, Fisheries and Food.
26 Wynn, SW, Wynn, AH, Doyle, W, et al. (1994) The association of maternal social class with maternal diet and the dimensions of babies in a population of London women. Nutr Health 9, 303315.
27 Folch, J, Lees, M & Sloane Stanley, GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497509.
28 Bueno, AA, Ghebremeskel, K, Bakheit, KH, et al. (2012) Dimethyl acetals, an indirect marker of the endogenous antioxidant plasmalogen level, are reduced in blood lipids of Sudanese pre-eclamptic subjects whose background diet is high in carbohydrate. J Obstet Gynaecol 32, 241246.
29 Brand, A, Crawford, MA & Yavin, E (2010) Retailoring docosahexaenoic acid-containing phospholipid species during impaired neurogenesis following omega-3 alpha-linolenic acid deprivation. J Neurochem 114, 13931404.
30 Han, X & Gross, RW (1995) Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom 6, 12021210.
31 Crawford, MA & Sinclair, AJ (1972) Nutritional influences in the evolution of the mammalian brain. In Lipids, Malnutrition and the Developing Brain, pp. 267292 [Elliot, K and Knight, J, editors]. Amsterdam: Elsevier (A Ciba Foundation Symposium).
32 Lott, IT, Head, E, Doran, E, et al. (2006) Beta-amyloid, oxidative stress and Down syndrome. Curr Alzheimer Res 3, 521528.
33 Meguid, NA, Kholoussi, NM & Afifi, HH (2001) Evaluation of superoxide dismutase and glutathione peroxidase enzymes and their cofactors in Egyptian children with Down's syndrome. Biol Trace Elem Res 81, 2128.
34 Brugge, K, Nichols, S, Saitoh, T, et al. (1999) Correlations of glutathione peroxidase activity with memory impairment in adults with Down syndrome. Biol Psychiatry 46, 16821689.
35 Reynolds, T (2008) Antioxidants do not improve early childhood development in children with Down's syndrome. J Pediatr 153, 441.
36 Varga, P, V Oláh, A & Oláh, E (2008) Biochemical alterations in patients with Down syndrome. Orv Hetil 149, 12031213.
37 Zoeller, RA, Lake, AC, Nagan, N, et al. (1999) Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether. Biochem J 338, 769776.
38 Leray, C, Cazenave, JP & Gachet, C (2002) Platelet phospholipids are differentially protected against oxidative degradation by plasmalogens. Lipids 37, 285290.
39 Spiteller, G (2006) Peroxyl radicals: inductors of neurodegenerative and other inflammatory diseases. Their origin and how they transform cholesterol, phospholipids, plasmalogens, polyunsaturated fatty acids, sugars, and proteins into deleterious products. Free Radic Biol Med 41, 362387.
40 Zommara, M, Tachibana, N, Mitsui, K, et al. (1995) Inhibitory effect of ethanolamine plasmalogen on iron- and copper-dependent lipid peroxidation. Free Radic Biol Med 18, 599602.
41 Engelmann, B (2004) Plasmalogens: targets for oxidants and major lipophilic antioxidants. Biochem Soc Trans 32, 147150.
42 Lessig, J & Fuchs, B (2009) Plasmalogens in biological systems: their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Curr Med Chem 16, 20212041.
43 Saitoh, M, Itoh, M, Takashima, S, et al. (2009) Phosphatidyl ethanolamine with increased polyunsaturated fatty acids in compensation for plasmalogen defect in the Zellweger syndrome brain. Neurosci Lett 449, 164167.
44 Khan, M, Singh, J & Singh, I (2008) Plasmalogen deficiency in cerebral adrenoleukodystrophy and its modulation by lovastatin. J Neurochem 106, 17661779.
45 Henis, YI, Rimon, G & Felder, S (1982) Lateral mobility of phospholipids in turkey erythrocytes. Implications for adenylate cyclase activation. J Biol Chem 257, 14071411.
46 Schlame, M, Brody, S & Hostetler, KY (1993) Mitochondrial cardiolipin in diverse eukaryotes. Comparison of biosynthetic reactions and molecular acyl species. Eur J Biochem 212, 727735.
47 Wolff, RL, Combe, NA & Entressangles, B (1985) Positional distribution of fatty acids in cardiolipin of mitochondria from 21-day-old rats. Lipids 20, 908914.
48 Crawford, MA, Golfetto, I, Ghebremeskel, K, et al. (2003) The potential role for arachidonic and docosahexaenoic acids in protection against some central nervous system injuries in preterm infants. Lipids 38, 303315.
49 Fenn, JB, Mann, M, Meng, CK, et al. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 6471.

Keywords

Type Description Title
PDF
Supplementary materials

Bueno Supplementary Material
Supplementary Material

 PDF (234 KB)
234 KB

Erythrocyte phospholipid molecular species and fatty acids of Down syndrome children compared with non-affected siblings

  • Allain A. Bueno (a1), Annette Brand (a2), Marita M. Neville (a3), Catherine Lehane (a3), Nina Brierley (a4) and Michael A. Crawford (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed