Skip to main content Accessibility help
×
Home

Enhancement of butyrate production in the rat caecocolonic tract by long-term ingestion of resistant potato starch

  • Gwenaëlle Le Blay (a1), Catherine Michel (a1), Hervé M. Blottière (a1) and Christine Cherbut (a1)

Abstract

Some data suggest that the colonic microflora may adapt to produce more butyrate if given time and the proper substrate. To test this hypothesis, we investigated the effect of prolonged feeding of resistant potato starch on butyrate production. Rats were fed on either a low-fibre diet (basal) or the same diet supplemented with 90 g resistant potato starch/kg (PoS) for 0·5, 2 and 6 months. Short-chain fatty acid (SCFA) concentrations were determined in caecal and colonic contents at the end of each ingestion period. Total SCFA concentration increased over time throughout the caecocolonic tract with PoS, but was not modified with the basal diet. While propionate concentration was unchanged, butyrate concentration was highly increased by PoS at each time period in both the caecum and colon. Moreover, the butyrogenic effect of PoS increased over time, and the amount of butyrate was increased 6-fold in the caecum and proximal colon and 3-fold in the distal colon after 6 months compared with 0·5 months. Accordingly, the ratio butyrate: - total SCFA increased over time throughout the caecocolonic tract (12·6 (SE 2·8) v. 28 (SE 1·8) % in the caecum, 10·5 (SE 1·4) v. 26·8 (SE 0·9) % in the proximal colon, and 7·3 (SE 2·4) v. 23·9 (SE 2·7) % in the distal colon at 0·5 v. 6 months respectively), while the proportion of acetate decreased. Neither the proportion nor the concentration of butyrate was modified over time with the basal diet. Butyrate production was thus promoted by long-term ingestion of PoS, from the caecum towards the distal colon, which suggests that a slow adaptive process occurs within the digestive tract in response to a chronic load of indigestible carbohydrates.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Enhancement of butyrate production in the rat caecocolonic tract by long-term ingestion of resistant potato starch
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Enhancement of butyrate production in the rat caecocolonic tract by long-term ingestion of resistant potato starch
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Enhancement of butyrate production in the rat caecocolonic tract by long-term ingestion of resistant potato starch
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Christine Cherbut, fax +33 2 40 67 50 12, email cherbut@nantes.inra.fr

References

Hide All
Argenzio, RA, Miller, N & von Englehardt, W (1975) Effect of volatile fatty acids on water and ion absorption from the goat colon. American Journal of Physiology 229, 9971002.
Bianchini, F, Caderni, G, Magno, C, Testeloni, G & Dolara, P (1992) Profile of short-chain fatty acids and rectal proliferation in rats fed sucrose or cornstarch diets. Journal of Nutrition 122, 254261.
Brunsgaard, G, Bach Knudsen, KE & Eggum, BO (1995) The influence of the period of adaptation on the digestibility of diets containing different types of indigestible polysaccharides in rats. British Journal of Nutrition 74, 833848.
Champ, M, Noah, L, Loizeau, G & Kozlowski, F (1999) Analytical methods for resistant starch. In Complex Carbohydrate in Foods: Definition, Functionality, and Analysis [Cho, S, Prosky, L and Dreher, M, editors]. New York, NY: Marcel Dekker Co.
Cherbut, C (1995) Effects of short chain fatty acids on gastrointestinal motility. In Physiological and Clinical Aspects of Short Chain Fatty Acids, pp. 191207 [Cummings, JHRombeau, JL and Sakata, T, editors]. Cambridge: Cambridge University Press.
Cherbut, C, Ferrier, L, Rozé, C, Anini, Y, Blottière, H, Lecannu, G & Galmiche, JP (1998) Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat American Journal of Physiology 275, G1415G1422.
Cherbuy, C, Darcy-Vrillon, B, Morel, MT, Pegorier, JP & Duée, PH (1995) Effect of germfree state on the capacities of isolated rat colonocytes to metabolize n-butyrate, glucose, and glutamine Gastroenterology 109, 18901899.
Cotta, MA (1988) Amylolytic activity of selected species of ruminal bacteria Applied Environmental Microbiology 54, 772776.
Darcy-Vrillon, B & Duée, PH (1995) Fibre effect on nutrient metabolism in splanchnic and peripheral tissues. In Dietary Fibre: Mechanisms of Action in Human Physiology and Metabolism, pp. 8394 [Cherbut, CBarry, JLLairon, D and Durand, M editors]. Paris: John Libbey Eurotext.
El Oufir, L, Flourié, B, Bruley des Varannes, S, Barry, JL, Cloarec, D, Bornet, F & Galmiche, JP (1996) Relations between transit time, fermentation products, and hydrogen-consuming flora in healthy humans Gut 38, 870877.
Englyst, HN, Hay, S & Macfarlane, GT (1987) Polysaccharide breakdown by mixed populations of human faecal bacteria FEMS Microbiology and Ecology 95, 163171.
Faulks, RM, Southon, S & Livesey, G (1989) Utilization of alpha-amylase (EC 3.2.1.1)-resistant maize and pea (Pisum sativum) starch in the rat British Journal of Nutrition 61, 291300.
Hammer, J & Phillips, SF (1993) Fluid loading of the human colon: effects on segmental transit and stool composition Gastro-enterology 105, 988998.
Hyden, S (1955) A turbidimetric method for the determination of higher polyethylene glycols in biological materials Annals of the Royal Agricultural College of Sweden 22, 139145.
Jouany, JP (1982) Dosage des acides gras volatils (AGV) et des alcools dans les contenus digestifs, les jus d'ensilage, les cultures bactériennes et les contenus des fermenteurs anaérobies (Determination of volatile fatty acids and alcohols in digestive contents, ensilage juices, bacterial cultures and anaerobic fermenter contents) Science des Aliments 2, 131144.
Key, FB & Mathers, JC (1995) Digestive adaptations of rats given white bread and cooked haricot beans (Phasoleus vulgaris): large bowel fermentation and digestion of complex carbohydrates British Journal of Nutrition 74, 393406.
Kleessen, B, Stoof, G, Proll, J, Schmiedl, D, Noack, J & Blaut, M (1997) Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats Journal of Animal Science 75, 24532462.
Luick, B & Penner, MH (1991) Nominal response of passage rates to fiber particle size in rats Journal of Nutrition 121, 19401947.
Macfarlane, GT & Cummings, JH (1991) The colonic flora, fermentation, and large bowel digestive function. In The Large Intestine: Physiology, Pathophysiology and Disease, pp. 5192 [Phillips, SF, Pemberton, JH and Shorter, RG, editors]. New York, NY: Raven Press.
Macfarlane, GT & Englyst, HN (1986) Starch utilization by the human large intestinal microflora Journal of Applied Bacteriology 60, 195201.
Macfarlane, GT & Gibson, GR (1995) Microbiological aspects of the production of short-chain fatty acids in the large bowel. In Physiological and Clinical Aspects of Short-chain Fatty Acids, pp. 87105 [Cummings, JHRombeau, JL and Sakata, T editors]. Cambridge: Cambridge University Press.
Macfarlane, GT & Gibson, GR (1997) Carbohydrate fermentation, energy transduction and gas metabolism in the human large intestine. In Gastrointestinal Microbiology: Gastrointestinal Ecosystems and Fermentations, vol. 1, pp. 269318 [Mackie, RI and White, BA editors]. New York, NY: Chapman & Hall.
Macfarlane, GT, Hay, S, Macfarlane, S & Gibson, GR (1990) Effect of different carbohydrates on growth, polysaccharidase and glycosidase production by Bacteroides ovatus, in batch and continuous culture Journal of Applied Bacteriology 68, 179187.
Macfarlane, GT & Macfarlane, S (1993) Factors affecting fermentation reactions in the large bowel Proceedings of the Nutrition Society 52, 367373.
McIntyre, A, Gibson, PR & Young, GP (1993) Butyrate production from dietary fibre and protection against large bowel cancer in a rat model Gut 34, 386391.
Martin, LJM, Dumon, HJW & Champ, MMJ (1998) Production of short-chain fatty acids from resistant starch in a pig model Journal of the Science of Food and Agriculture 77, 7180.
Mathers, JC, Kennard, J & James, OFW (1993) Gastrointestinal responses to oat consumption in young adult and elderly rats: digestion, large bowel fermentation and crypt cell proliferation rates British Journal of Nutrition 70, 567584.
Mathers, JC, Smith, H & Carter, S (1997) Dose-response effects of raw potato starch on small-intestinal escape, large-bowel fermentation and gut transit time in the rat British Journal of Nutrition 78, 10151029.
Maurin-Blanchet, H (1997) Le “G.I.R.C.O.R.”, Groupe Interprofessionnel de Réflexion et de Communication sur la Recherche Bulletin de l'Academie Véterinaire de France 70, 295306.
Mortensen, FV, Nielsen, H, Aalkjaer, C, Mulvany, MJ & Hessov, I (1994) Short chain fatty acids relax isolated resistant arteries from the human ileum by a mechanism dependent on anion exchange Pharmacology Toxicology 75, 181185.
Phillips, J, Muir, JG, Birkett, A, Lu, ZX, Jones, GP, O'Dea, K & Young, GP (1995) Effect of resistant starch on fecal bulk and fermentation-dependent events in humans American Journal of Clinical Nutrition 62, 121130.
Reeves, AR, D'Ellia, JN, Frias, J & Salyers, AA (1996) A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch Journal of Bacteriology 178, 823830.
Reid, CA, Hillman, K, Henderson, C & Glass, H (1996) Fermentation of native and processed starches by the porcine caecal anaerobe Clostridium butyricum (NCIMB 7423) Journal of Applied Bacteriology 80, 191198.
Roediger, WEW (1995) The place of short-chain fatty acids in colonocyte metabolism in health and ulcerative colitis: the impaired colonocyte barrier. In Physiological and Clinical Aspects of Short-chain Fatty Acids, pp. 337351 [Cummings, JHRombeau, JL and Sakata, T editors]. Cambridge: Cambridge University Press.
Roediger, WEW & Moore, A (1981) The effect of short-chain fatty acids on sodium absorption in the isolated human colon perfused through the vascular bed Digestive Disease and Science 26, 100106.
Ropert, A, Cherbut, C, Roze, C, Le Qullec, A, Holst, JJ, Fu-Cheng, X, Bruley des Varannes, S & Galmiche, JP (1996) Colonic fermentation and proximal gastric tone in humans Gastroenterology 111, 289296.
Sakata, T (1987) Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors British Journal of Nutrition 58, 95103.
Salvador, V, Cherbut, C, Barry, JL, Bertrand, D, Bonnet, C & Delort-Laval, J (1993) Sugar composition of dietary fibre and short-chain fatty acid production during in vitro fermentation by human bacteria British Journal of Nutrition 70, 189197.
Salyers, AA (1985) Breakdown of polysaccharides by human intestinal bacteria Journal of Environmental Pathology, Toxicology and Oncology 5, 211231.
Salyers, AA (1995) Fermentation of polysaccharides by human colonic anaerobes. In Dietary Fibre: Mechanisms of Action in Human Physiology and Metabolism, pp. 2935 [Cherbut, CBarry, JLLairon, D and Durand, M editors]. Paris: John Libbey Eurotext.
Salyers, AA & Leedle, JAZ (1983) Carbohydrate metabolism in the human colon. In The Human Intestinal Flora in Health and Disease, pp. 129146 [Hendges, D editor]. New York, NY: Academic Press.
Scheppach, W, Fabian, C, Sachs, M & Kasper, H (1988) The effect of starch malabsorption on fecal short-chain fatty acid excretion in man Scandinavian Journal of Gastroenterology 26, 755759.
Siavoshian, S, Blottière, HM, Cherbut, C & Galmiche, JP (1997) Butyrate stimulates cyclin D and p21 and inhibits cyclin-dependent kinase 2 expression in HT-29 colonic epithelial cells Biochemical and Biophysical Research Communications 232, 169172.
Silvester, KR, Englyst, HN & Cummings, JH (1995) Ileal recovery of starch from whole diets containing resistant starch measured in vitro and fermentation of ileal effluent American Journal of Clinical Nutrition 62, 403411.
Tappenden, KA, Thomson, ABR, Wild, GE & McBurney, MI (1997) Short-chain fatty acid-supplemented total parenteral nutrition enhances functional adaptation to intestinal resection in rats Gastroenterology 112, 792802.
Toscani, A, Soprano, DR & Soprano, KJ (1988) Molecular analysis of sodium butyrate-induced growth arrest Oncogenes Research 3, 223238.
Tulung, BRémésy, C & Demigné, C (1987) Specific effects of guar gum or gum arabic on adaptation of cecal digestion to high fiber diets in the rat Journal of Nutrition 117, 15561561.
Van Soest, PJ, Uden, P & Wrick, KF (1983) Critique and evaluation of markers for use in nutrition of humans and farm and laboratory animals Nutrition Reports International 27, 1728.
Varel, VH, Robinson, IM & Jung, HJG (1987) Influence of dietary fiber on xylanolytic and cellulolytic bacteria of adult pigs Applied Environmental Microbiology 53, 2226.
Weaver, GA, Tangel, CT, Krause, JA, Alpern, HD, Jenkins, PL, Parfitt, MM & Stragand, JJ (1996) Dietary guar gum alters colonic microbiotal fermentation in azoxymethane-treated rats Journal of Nutrition 126, 19791991.
Whitehead, RH, Young, GP & Bhathal, PS (1986) Effects of short chain fatty acids on a new human colon carcinoma cell line (LIM1215) Gut 27, 14571463.
Wyatt, GM & Horn, N (1988) Fermentation of resistant food starches by human and rat intestinal bacteria Journal of the Science of Food and Agriculture 44, 281288.
Young, GP & Gibson, PR (1995) Butyrate and the human cancer cell. In Physiological and Clinical Aspects of Short Chain Fatty Acids, pp. 319335 [Cummings, JHRombeau, JL and Sakata, T editors]. Cambridge: Cambridge University Press.

Keywords

Enhancement of butyrate production in the rat caecocolonic tract by long-term ingestion of resistant potato starch

  • Gwenaëlle Le Blay (a1), Catherine Michel (a1), Hervé M. Blottière (a1) and Christine Cherbut (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed