Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T01:19:45.577Z Has data issue: false hasContentIssue false

Effects of whey protein, casein, soya-bean and sunflower proteins on the serum, tissue and faecal steroids in rats*

Published online by Cambridge University Press:  09 March 2007

C. Sautier
Affiliation:
Unité de Recherches sur la Nutrition et l' Alimentation, U.1. INSERM, Hôpital Bichat, 170 Bd. Ney, 75877 Paris Cédex 18, France
K. Dieng
Affiliation:
Unité de Recherches sur la Nutrition et l' Alimentation, U.1. INSERM, Hôpital Bichat, 170 Bd. Ney, 75877 Paris Cédex 18, France
C. Flament
Affiliation:
Unité de Recherches sur la Nutrition et l' Alimentation, U.1. INSERM, Hôpital Bichat, 170 Bd. Ney, 75877 Paris Cédex 18, France
C. Doucet
Affiliation:
Unité de Recherches sur la Nutrition et l' Alimentation, U.1. INSERM, Hôpital Bichat, 170 Bd. Ney, 75877 Paris Cédex 18, France
J. P. Suquet
Affiliation:
Unité de Recherches sur la Nutrition et l' Alimentation, U.1. INSERM, Hôpital Bichat, 170 Bd. Ney, 75877 Paris Cédex 18, France
D. Lemonnier
Affiliation:
Unité de Recherches sur la Nutrition et l' Alimentation, U.1. INSERM, Hôpital Bichat, 170 Bd. Ney, 75877 Paris Cédex 18, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Four groups of rats were fed for 49 d on one of four semi-purified diets, without added cholesterol and containing 230 g/kg of the following isolated proteins: casein, whey, soya-bean or sunflower.

2. Whey, soya-bean and sunflower proteins, when compared with casein, decreased the level of serum high-density-lipoprotein (HDL)-cholesterol. These low cholesterol levels were accompanied by an increase in the daily faecal excretion of neutral sterols and bile acids in the case of soya-bean protein, and by a decrease in the liver cholesterol content, when rats were fed on whey protein.

3. Considering the amino acid composition of the four purified proteins, we observed that serum total and HDL-cholesterol levels had a significant positive correlation with tyrosine and glutamic acid, and a negative correlation with cystine and alanine.

4. The present study showed that the hypocholesterolaemic effect of dietary proteins was not related to their animal or vegetable origin.

Type
Paper of diract relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

Abell, L. L., Levy, B. B., Brodie, B. B. & Kendall, F. E. (1952). J. biol. Chem. 195, 357.Google Scholar
Ahrens, R. A., Wells, S. S., Adams, Y. L., Taylor, R. P. & Kelley, D. L. (1968). J. Nutr. 95, 303.CrossRefGoogle Scholar
Bazzano, G. (1969). Proc. Soc. exp. Biol. Med. 131, 1463.CrossRefGoogle Scholar
Carroll, K. K., Giovanetti, P. M., Huff, M. W., Moase, O., Roberts, D. C. K. & Wolfe, B. M. (1978). Am. J. clin. Nutr. 31, 1312.Google Scholar
Carroll, K. K., Hamilton, R. M. G., Huff, M. W. & Falconer, A. D. (1978). J. Clin. Nutr. 31, S.203.CrossRefGoogle Scholar
Czarnecki, S. K. & Kritchevsky, D. (1979). J. Am. Oil Chem. Soc. 56, 388A.Google Scholar
Folch, J., Lees, M. & Stanley, G. M. S. (1957). J. biol. Chem. 226, 497.Google Scholar
Grove, T. H. (1979). Clin. Chem. 25, 560.Google Scholar
Hodges, R. E., Krehl, W. A., Stone, D. B. & Lopez, A. (1967). J. clin. Nutr. 20, 198.CrossRefGoogle Scholar
Huff, M. W. & Carroll, K. K. (1980 a). J. Lipid Res. 21, 546.CrossRefGoogle Scholar
Huff, M. W. & Carroll, K. K. (1980 b). J. Nutr. 110, 1676.CrossRefGoogle Scholar
Huff, M. W., Hamilton, R. M. G. & Carroll, K. K. (1977). Atherosclerosis 28, 187.Google Scholar
Jarowsky, C. I. & Pytelewski, R. (1975). J. Pharm. Sci. 64, 690.CrossRefGoogle Scholar
Kiribuchi, M., Miura, K., Tokuda, S. & Kaneda, T. (1981). XII Int. Congress of Nutrition, San Diego, USA. Abstr., p. 98.Google Scholar
Kritchevsky, D., Tepper, R. P. & Story, J. A. (1974). Nutr. Rep int. 9, 301.Google Scholar
Nagata, Y., Imizumi, K. & Sugano, M. (1980). Br. J. Nutr. 44, 113.Google Scholar
Nagata, Y., Tanaka, K. & Sugano, M. (1981). Br. J. Nutr. 45, 233.Google Scholar
Oakenfull, D. G. & Fenwick, D. E. (1978). Br. J. Nutr. 40, 299.CrossRefGoogle Scholar
Oakenfull, D. G., Fenwick, D. E., Hood, R. L., Topping, D. L., Illman, R. L. & Storer, G. B. (1979). Br. J. Nutr. 42, 209.Google Scholar
Pathirana, C., Gibney, M. J. & Taylor, T. G. (1980). Atherosclerosis 36, 595.Google Scholar
Potter, J. D., Topping, D. L. & Oakenfull, D. G. (1979). Lancet i, 223.Google Scholar
Roberts, D. C. K., Huff, M. W. & Carroll, K. K. (1979). Lipids 14, 566.CrossRefGoogle Scholar
Röschlau, P., Bernt, E. & Gruber, W. (1974). Z. Klin. Chem. Klin. Biochem. 12, 403.Google Scholar
Sautier, C., Doucet, C., Flament, C. & Lemonnier, D. (1979). Atherosclerosis 34, 233.Google Scholar
Sirtori, C. R. (1981). Lipoproteins and Coronary Atherosclerosis, Lugano. Abstr., p. 89.Google Scholar
Sirtori, C. R., Agradi, E., Conti, F., Mantero, O. & Gatti, E. (1975). Lancet i, 275.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods, 6th ed., p. 274. Ames, Iowa: Iowa State University Press.Google Scholar
Van Soest, P. J. & McQueen, R. W. (1973). Proc. Nutr. Soc. 32, 123.Google Scholar
Weber, A. M., Chartrand, L., Doyon, G., Gordon, S. & Roy, C. C. (1972). Clinica chim. Acta 39, 524.CrossRefGoogle Scholar
Wells, W., Anderson, S. & Quanma, R. (1960). J. Nutr. 71, 405.CrossRefGoogle Scholar
Wostmann, B. S. & Bruckner-Kardoss, E. (1980). J. Nutr. 110, 82.Google Scholar
Yadav, N. R. & Liener, I. E. (1977). Nutr. Rep. int. 16, 385.Google Scholar