Skip to main content Accessibility help
×
Home

Effects of trans-10, cis-12 conjugated linoleic acid on the expression of uncoupling proteins in hamsters fed an atherogenic diet

  • Joan Ribot (a1), Maria P. Portillo (a2), Catalina Picó (a1), M. Teresa Macarulla (a2) and Andreu Palou (a1)...

Abstract

It is known that conjugated linoleic acid (CLA) feeding decreases body adiposity but the mechanisms involved are not clear. The aim of this study was to analyse whether alterations in uncoupling protein (UCP) expression in white and brown adipose tissues (WAT and BAT, respectively) and in skeletal muscle may be responsible for the effect of trans-10, cis-12 CLA on the size of body fat depots in hamsters. Animals were divided into three groups and fed an atherogenic diet with different amounts of trans-10, cis-12 CLA (0 control, 0·5, or 1 g/100 g diet) for 6 weeks. CLA feeding reduced adipose depot weights, but had no effect on body weight. Leptin mRNA expression decreased in both subcutaneous and perirenal WAT depots, in accordance with lower adiposity, whereas resistin mRNA expression was not changed. Animals fed CLA had lower UCP1 mRNA levels in BAT (both doses of CLA) and in perirenal WAT (the low dose), and lower UCP3 mRNA levels in subcutaneous WAT (the high dose). UCP2 mRNA expression in WAT was not significantly affected by CLA feeding. Animals fed the high dose of CLA showed increased UCP3 and carnitine palmitoyl transferase-I (CPT-I) mRNA expression levels in skeletal muscle. In summary, induction of UCP1 or UCP2 in WAT and BAT is not likely to be responsible for the fat-reduction action of CLA, but the increased expression of UCP3 in skeletal muscle, together with a higher expression of CPT-I, may explain the previously reported effects of dietary CLA in lowering adiposity and increasing fatty acid oxidation by skeletal muscle.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of trans-10, cis-12 conjugated linoleic acid on the expression of uncoupling proteins in hamsters fed an atherogenic diet
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of trans-10, cis-12 conjugated linoleic acid on the expression of uncoupling proteins in hamsters fed an atherogenic diet
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of trans-10, cis-12 conjugated linoleic acid on the expression of uncoupling proteins in hamsters fed an atherogenic diet
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr M. P. Portillo, fax: +34 945013014, email mariapuy.portillo@ehu.es

References

Hide All
Azain, MJ, Hausman, DB, Sisk, MB, Flatt, WP & Jewell, DE (2000) Dietary conjugated linoleic acid reduces rat adipose tissue cell size rather than cell number. J Nutr 130, 15481554.
Bezaire, V, Spriet, LL, Campbell, S, Sabet, N, Gerrits, M, Bonen, A & Harper, ME (2005) Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation. Faseb J 19, 977979.
Brodie, AE, Manning, VA, Ferguson, KR, Jewell, DE & Hu, CY (1999) Conjugated linoleic acid inhibits differentiation of pre- and post- confluent 3T3-L1 preadipocytes but inhibits cell proliferation only in preconfluent cells. J Nutr 129, 602606.
Cannon, B & Nedergaard, J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84, 277359.
Cusin, I, Zakrzewska, KE, Boss, O, Muzzin, P, Giacobino, JP, Ricquier, D, Jeanrenaud, B & Rohner-Jeanrenaud, F (1998) Chronic central leptin infusion enhances insulin-stimulated glucose metabolism and favors the expression of uncoupling proteins. Diabetes 47, 10141019.
Cherian, G, Holsonbake, TB, Goeger, MP & Bildfell, R (2002) Dietary CLA alters yolk and tissue FA composition and hepatic histopathology of laying hens. Lipids 37, 751757.
Choi, JS, Jung, MH, Park, HS & Song, J (2004) Effect of conjugated linoleic acid isomers on insulin resistance and mRNA levels of genes regulating energy metabolism in high-fat-fed rats. Nutrition 20, 10081017.
Ealey, KN, El-Sohemy, A & Archer, MC (2002) Effects of dietary conjugated linoleic acid on the expression of uncoupling proteins in mice and rats. Lipids 37, 853861.
Evans, M, Brown, J & McIntosh, M (2002 a) Isomer-specific effects of conjugated linoleic acid (CLA) on adiposity and lipid metabolism. J Nutr Biochem 13, 508.
Evans, M, Geigerman, C, Cook, J, Curtis, L, Kuebler, B & McIntosh, M (2000) Conjugated linoleic acid suppresses triglyceride accumulation and induces apoptosis in 3T3-L1 preadipocytes. Lipids 35, 899910.
Evans, M, Lin, X, Odle, J & McIntosh, M (2002 b) Trans-10, cis-12 conjugated linoleic acid increases fatty acid oxidation in 3T3-L1 preadipocytes. J Nutr 132, 450–455.
Felipe, F, Bonet, ML, Ribot, J & Palou, A (2003) Up-regulation of muscle uncoupling protein 3 gene expression in mice following high fat diet, dietary vitamin A supplementation and acute retinoic acid-treatment. Int J Obes Relat Metab Disord 27, 60–69.
Gaullier, JM, Berven, G, Blankson, H & Gudmundsen, O (2002) Clinical trial results support a preference for using CLA preparations enriched with two isomers rather than four isomers in human studies. Lipids 37, 10191025.
Gavino, VC, Gavino, G, Leblanc, MJ & Tuchweber, B (2000) An isomeric mixture of conjugated linoleic acids but not pure cis-9, trans-11-octadecadienoic acid affects body weight gain and plasma lipids in hamsters. J Nutr 130, 27–29.
Gong, DW, He, Y, Karas, M & Reitman, M (1997) Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J Biol Chem 272, 2412924132.
Henriksen, EJ, Bourey, RE, Rodnick, KJ, Koranyi, L, Permutt, MA & Holloszy, JO (1990) Glucose transporter protein content and glucose transport capacity in rat skeletal muscles. Am J Physiol 259, E593–E598.
Henriksen, EJ, Teachey, MK, Taylor, ZC, Jacob, S, Ptock, A, Kramer, K & Hasselwander, O (2003) Isomer-specific actions of conjugated linoleic acid on muscle glucose transport in the obese Zucker rat. Am J Physiol Endocrinol Metab 285, E98E105.
Kamohara, S, Burcelin, R, Halaas, JL, Friedman, JM & Charron, MJ (1997) Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 389, 374377.
Kamphuis, MM, Lejeune, MP, Saris, WH & Westerterp-Plantenga, MS (2003) Effect of conjugated linoleic acid supplementation after weight loss on appetite and food intake in overweight subjects. Eur J Clin Nutr 57, 12681274.
Kritchevsky, D, Tepper, SA, Wright, S, Tso, P & Czarnecki, SK (2000) Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. J Am Coll Nutr 19, 472S–477S.
Kusminski, CM, McTernan, PG & Kumar, S (2005) Role of resistin in obesity, insulin resistance and Type II diabetes. Clin Sci (Lond) 109, 243–256.
Macarulla, MT, Fernandez-Quintela, A, Zabala, A, Navarro, V, Echevarria, E, Churruca, I, Rodriguez, VM & Portillo, MP (2005) Effects of conjugated linoleic acid on liver composition and fatty acid oxidation are isomer-dependent in hamster. Nutrition 21, 512519.
Martin, JC & Valeille, K (2002) Conjugated linoleic acids: all the same or to everyone its own function? Reprod Nutr Dev 42, 525536.
Navarro, V, Zabala, A, Macarulla, MT, Fernandez-Quintela, A, Rodriguez, VM, Simon, E & Portillo, MP (2003) Effects of conjugated linoleic acid on body fat accumulation and serum lipids in hamsters fed an atherogenic diet. J Physiol Biochem 59, 193–199.
Navarro, V, Zabala, A, Macarulla, MT, Fernandez-Quintela, A, Rodriguez, VM, Simon, E & Portillo, MP (2006) The body fat-lowering effect of conjugated linoleic acid: comparison between animal and human studies. J Physiol Biochem 62, 137–148.
Oliver, P, Pico, C, Martinez, N, Bonet, ML & Palou, A (2000) In vivo effects of CGP-12177 on the expression of leptin and uncoupling protein genes in mouse brown and white adipose tissues. Int J Obes Relat Metab Disord 24, 423428.
Ostrowska, E, Suster, D, Muralitharan, M, Cross, RF, Leury, BJ, Bauman, DE & Dunshea, FR (2003) Conjugated linoleic acid decreases fat accretion in pigs: evaluation by dual-energy X-ray absorptiometry. Br J Nutr 89, 219–229.
Palou, A, Pico, C, Bonet, ML & Oliver, P (1998) The uncoupling protein, thermogenin. Int J Biochem Cell Biol 30, 7–11.
Pariza, MW (2004) Perspective on the safety and effectiveness of conjugated linoleic acid. Am J Clin Nutr 79, 1132S1136S.
Pariza, MW, Ashoor, SH, Chu, FS & Lund, DB (1979) Effects of temperature and time on mutagen formation in pan-fried hamburger. Cancer Lett 7, 63–69.
Park, Y, Albright, KJ, Liu, W, Storkson, JM, Cook, ME & Pariza, MW (1997) Effect of conjugated linoleic acid on body composition in mice. Lipids 32, 853858.
Rahman, SM, Wang, Y, Yotsumoto, H, Cha, J, Han, S, Inoue, S & Yanagita, T (2001) Effects of conjugated linoleic acid on serum leptin concentration, body-fat accumulation, and beta-oxidation of fatty acid in OLETF rats. Nutrition 17, 385–390.
Reeves, PG, Nielsen, FH & Fahey, GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76 rodent diet. J Nutr 123, 19391951.
Ribot, J, Felipe, F, Bonet, ML & Palou, A (2001) Changes of adiposity in response to vitamin A status correlate with changes of PPAR gamma 2 expression. Obes Res 9, 500–509.
Roche, HM, Noone, E, Sewter, C, McBennett, S, Savage, D, Gibney, MJ, O'Rahilly, S & Vidal-Puig, AJ (2002) Isomer-dependent metabolic effects of conjugated linoleic acid: insights from molecular markers sterol regulatory element-binding protein-1c and LXRalpha. Diabetes 51, 20372044.
Rodriguez, E, Ribot, J & Palou, A (2002) Trans-10, cis-12, but not cis-9, trans-11 CLA isomer, inhibits brown adipocyte thermogenic capacity. Am J Physiol Regul Integr Comp Physiol 282, R1789–R1797.
Ryder, JW, Portocarrero, CP, Song, XM, et al. (2001) Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes 50, 11491157.
Samec, S, Seydoux, J & Dulloo, AG (1998) Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? Faseb J 12, 715–724.
Schrauwen, P, Hoppeler, H, Billeter, R, Bakker, AH & Pendergast, DR (2001) Fiber type dependent upregulation of human skeletal muscle UCP2 and UCP3 mRNA expression by high-fat diet. Int J Obes Relat Metab Disord 25, 449–456.
Schrauwen, P, van Marken Lichtenbelt, WD, Saris, WH & Westerterp, KR (1997) Changes in fat oxidation in response to a high-fat diet. Am J Clin Nutr 66, 276–282.
Simon, E, Macarulla, MT, Churruca, I, Fernandez-Quintela, A & Portillo, MP (2006) Trans-10, cis-12 conjugated linoleic acid prevents adiposity but not insulin resistance induced by an atherogenic diet in hamsters. J Nutr Biochem 17, 126–131.
Simon, E, Macarulla, MT, Fernandez-Quintela, A, Rodriguez, VM & Portillo, MP (2005) Body fat-lowering effect of conjugated linoleic acid is not due to increased lipolysis. J Physiol Biochem 61, 363369.
Takahashi, Y, Kushiro, M, Shinohara, K & Ide, T (2002) Dietary conjugated linoleic acid reduces body fat mass and affects gene expression of proteins regulating energy metabolism in mice. Comp Biochem Physiol B Biochem Mol Biol 133, 395404.
Terpstra, AH (2004) Effect of conjugated linoleic acid on body composition and plasma lipids in humans: an overview of the literature. Am J Clin Nutr 79, 352–361.
Tsuboyama-Kasaoka, N, Takahashi, M, Tanemura, K, Kim, HJ, Tange, T, Okuyama, H, Kasai, M, Ikemoto, S & Ezaki, O (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49, 15341542.
Wang, S, Subramaniam, A, Cawthorne, MA & Clapham, JC (2003) Increased fatty acid oxidation in transgenic mice overexpressing UCP3 in skeletal muscle. Diabetes Obes Metab 5, 295–301.
Warren, JM, Simon, VA, Bartolini, G, Erickson, KL, Mackey, BE & Kelley, DS (2003) Trans-10, cis-12 CLA increases liver and decreases adipose tissue lipids in mice: possible roles of specific lipid metabolism genes. Lipids 38, 497504.
West, DB, Blohm, FY, Truett, AA & DeLany, JP (2000) Conjugated linoleic acid persistently increases total energy expenditure in AKR/J mice without increasing uncoupling protein gene expression. J Nutr 130, 24712477.
Yamasaki, M, Mansho, K, Ogino, Y, Kasai, M, Tachibana, H & Yamada, K (2000) Acute reduction of serum leptin level by dietary conjugated linoleic acid in Sprague-Dawley rats. J Nutr Biochem 11, 467–471.
Zabala, A, Fernandez-Quintela, A, Macarulla, MT, Simon, E, Rodriguez, VM, Navarro, V & Portillo, MP (2006) Effects of conjugated linoleic acid on skeletal muscle triacylglycerol metabolism in hamsters. Nutrition 22, 528533.

Keywords

Effects of trans-10, cis-12 conjugated linoleic acid on the expression of uncoupling proteins in hamsters fed an atherogenic diet

  • Joan Ribot (a1), Maria P. Portillo (a2), Catalina Picó (a1), M. Teresa Macarulla (a2) and Andreu Palou (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed