Skip to main content Accessibility help
×
Home

Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life

  • Astrid M. Bakker-Zierikzee (a1), Martine S. Alles (a2), Jan Knol (a2), Frans J. Kok (a1), Jules J. M. Tolboom (a3) and Jacques G. Bindels (a1) (a2)...

Abstract

Adding prebiotics or probiotics to infant formula to improve the intestinal flora of formula-fed infants is considered to be a major innovation. Several companies have brought relevant formulations onto the market. However, comparative data on the effects of pre- and probiotics on the intestinal microflora of infants are not available. The present study aimed to compare the effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the composition and metabolic activity of the intestinal microflora. Before birth, infants were randomised and double blindly allocated to one of three formulas. The prebiotic (GOS/FOS) group (n 19) received regular infant formula supplemented with a mixture of galacto-oligosaccharides and fructo-oligosaccharides (6g/l). The probiotic (Bb-12) group (n 19) received the same formula supplemented with 6·0×1010 viable cells of B. animalis per litre. The standard group (n 19) received non-supplemented regular formula. A group of sixty-three breast-fed infants was included as a reference group. Faecal samples were taken at postnatal day 5 and 10, and week 4, 8, 12 and 16. Compared with the groups fed Bb-12 and standard formula, the GOS/FOS formula group showed higher faecal acetate ratio (69·7% (sem 2·7), 69·9% (sem 3·9) and 82·2% (sem 5·3); P<0·05) and lactate concentration (11·3 (sem 7·9), 3·1 (sem 2·3) and 34·7 (sem 10·7) mmol/kg faeces) and lower pH (6·6 (sem 0·2), 7·1 (sem 0·2) and 5·6 (sem 0·2); P<0·05) at 16 weeks. Differences in percentage of bifidobacteria between the GOS/FOS (59·2% (sem 7·7)), Bb-12 (52·7% (sem 8·0)) and the standard (51·8% (sem 6·4)) groups were not statistically significant at 16 weeks. Feeding infants GOS/FOS formula resulted in a similar effect on metabolic activity of the flora as in breast-fed infants. In the Bb-12 group, composition and metabolic activity of the flora were more similar to those of the standard group.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr A. M. Bakker-Zierikzee, fax +31 317 482782, email astrid.bakker@hetnet.nl

References

Hide All
Adams, MR & Hall, CJ (1988) Growth inhibition of food-borne pathogens by lactic acid and acetic acid and their mixtures. Int J Food Sci Technol 23, 287292.
Alander, M, Matto, J, Kneifel, W, Johansson, M, Kogler, B, Crittenden, R, Mattila, ST & Saarela, M (2001) Effect of galacto-oligosaccharide supplementation on human faecal microflora and on survival and persistence of Bifidobacterium lactis Bb-12 in the gastrointestinal tract. Int Dairy J 11, 817825.
Balmer, SE, Scott, PH & Wharton, BA (1989) Diet and faecal flora in the newborn: casein and whey proteins. Arch Dis Child 64, 16781684.
Benno, Y, Sawada, K & Mitsuoka, T (1984) The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol Immunol 28, 975986.
Boehm, G, Lidestri, M, Casetta, P, Jelinek, J, Negretti, F, Stahl, B & Marini, A (2002) Supplementation of a bovine milk formula with an oligosaccharide mixture increases counts of faecal bifidobacteria in preterm infants. Arch Dis Child 86, F178F181.
Brand, MJ, McVeagh, P, McNeil, Y & Messer, M (1998) Digestion of human milk oligosaccharides by healthy infants evaluated by the lactulose hydrogen breath test. J Pediatr 133, 9598.
Bullen, CL & Tearle, PV (1976) Bifidobacteria in the intestinal tract of infants: an in-vitro study. J Med Microbiol 9, 335344.
Chierici, R, Sawatzki, G, Thurl, S, Tovar, K & Vigi, V (1997) Experimental milk formulae with reduced protein content and desialylated milk proteins: influence on the faecal flora and the growth of term newborn infants. Acta Paediatr 86, 557563.
Edwards, CA, Parrett, AM, Balmer, SE & Wharton, BA (1994) Faecal short chain fatty acids in breast-fed and formula-fed babies. Acta Paediatr 83, 459462.
Eklund, T (1983) The anti microbial effect of dissociated and undissociated sorbic-acid at different pH levels. J Appl Bacteriol 54, 383390.
Engfer, MB, Stahl, B, Finke, B, Sawatzki, G & Daniel, H (2000) Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr 71, 15891596.
Ford, K & Labbok, M (1990) Implications of associated social and biomedical variables for research on the consequences of method of infant feeding. Am J Clin Nutr 52, 451456.
Fukushima, Y, Kawata, Y, Hara, H, Terada, A & Mitsuoka, T (1998) Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. Int J Food Microbiol 42, 3944.
Fuller, R (1989) Probiotics in man and animals. J Appl Bacteriol 66, 365378.
Gibson, GR & Roberfroid, MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125, 14011412.
Harmsen, HJ, Wildeboer, VA, Raangs, GC, Wagendorp, AA, Klijn, N, Bindels, JG & Welling, GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30, 6167.
Isolauri, E (2001) Probiotics in human disease. Am J Clin Nutr 73, 1142S1146S.
Isolauri, E, Arvola, T, Sutas, Y, Moilanen, E & Salminen, S (2000) Probiotics in the management of atopic eczema. Clin Exp Allergy 30, 16041610.
Jansen, GJ, Wildeboer-Veloo, A-CM, Tonk, R-HJ, Franks, AH & Welling, GW (1999) Development and validation of an automated, microscopy-based method for enumeration of groups of intestinal bacteria. J Microbiol Methods 37, 215221.
Kalliomaki, M, Salminen, S, Arvilommi, H, Kero, P, Koskinen, P & Isolauri, E (2001) Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357, 10761079.
Knol, J, Steenbakkers, BMA, van der Linde, EGM, Gross, S, Helm, K, Larczyk, M, Schopfer, H & Kafka, C (2002) Bifidobacterial species that are present in breast-fed infants are stimulated in formula fed infants by changing to a formula containing prebiotics. J Pediatr Gastroenterol Nutr 34, 477.
Knol, J, van der Linde, E, Wells, JCK & Bockler, HM (2003) An infant formula containing prebiotics changes the intestinal microflora of term infants. J Pediatr Gastroenterol Nutr 36, 566.
Langendijk, PS, Schut, F, Jansen, GJ, Raangs, GC, Kamphuis, GR, Wilkinson, MH & Welling, GW (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61, 30693075.
Langhendries, JP, Detry, J, Van-Hees, J, Lamboray, JM, Darimont, J, Mozin, MJ, Secretin, MC & Senterre, J (1995) Effect of a fermented infant formula containing viable bifidobacteria on the fecal flora composition and pH of healthy full-term infants. J Pediatr Gastroenterol Nutr 21, 177181.
Link-Amster, H, Rochat, F, Saudan, KY, Mignot, O & Aeschlimann, JM (1994) Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol Med Microbiol 10, 5563.
MacLean, W-CJ, Fink, BB, Schoeller, DA, Wong, W & Klein, PD (1983) Lactose assimilation by full-term infants: relation of [13 C] and H 2 breath tests with fecal [13 C] excretion. Pediatr Res 17, 629633.
Moon, NJ (1983) Inhibition of the growth of acid tolerant yeasts by acetate, lactate and their synergistic mixtures. J Appl Bacteriol 77, 412420.
Moro, G, Minoli, I, Mosca, M, Fanaro, S, Jelinek, J, Stahl, B & Boehm, G (2002) Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J Pediatr Gastroenterol Nutr 34, 291295.
Ogawa, K, Ben, RA, Pons, S, de-Paolo, MI & Bustos, FL (1992) Volatile fatty acids, lactic acid, and pH in the stools of breast-fed and bottle-fed infants [see comments]. J Pediatr Gastroenterol Nutr 15, 248252.
Saavedra, JM, Bauman, NA, Oung, I, Perman, JA & Yolken, RH (1994) Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet 344, 10461049.
Satokari, RM, Vaughan, EE, Akkermans-Antoon, DL, Saarela, M & de-Vos-Willem, M (2001) Polymerase chain reaction and denaturing gradient gel electrophoresis monitoring of fecal Bifidobacterium populations in a prebiotic and probiotic feeding trial. Syst Appl Microbiol 24, 227231.
Schiffrin, EJ, Rochat, F, Link-Amster, H, Aeschlimann, JM, Donnet-Hughes, A (1995) Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J Dairy Sci 78, 491497.
Schmelzle, H, Wirth, S, Skopnik, H, Radke, M, Knol, J, Bockler, HM, Bronstrup, A, Wells, J & Fusch, C (2003) Randomized double-blind study of the nutritional efficacy and bifidogenicity of a new infant formula containing partially hydrolyzed protein, a high β-palmitic acid level, and nondigestible oligosaccharides. J Pediatr Gastroenterol Nutr 36, 343351.
Siigur, U, Ormisson, A & Tamm, A (1993) Faecal short-chain fatty acids in breast-fed and bottle-fed infants. Acta Paediatr 82, 536538.
Stahl, B, Thurl, S, Zeng, J, Karas, M, Hillenkamp, F, Steup, M & Sawatzki, G (1994) Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem 223, 218226.
Wang, X & Gibson, GR (1993) Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J Appl Bacteriol 75, 373380.

Keywords

Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life

  • Astrid M. Bakker-Zierikzee (a1), Martine S. Alles (a2), Jan Knol (a2), Frans J. Kok (a1), Jules J. M. Tolboom (a3) and Jacques G. Bindels (a1) (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed