Skip to main content Accessibility help
×
Home

The effects of antibiotics and melatonin on hepato-intestinal inflammation and gut microbial dysbiosis induced by a short-term high-fat diet consumption in rats

  • Alper Yildirim (a1), Sevil Arabacı Tamer (a1), Duran Sahin (a1), Fatma Bagriacik (a1), Merve M. Kahraman (a1), Nilsu D. Onur (a1), Yusuf B. Cayirli (a1), Özlem T. Cilingir Kaya (a2), Burak Aksu (a3), Esra Akdeniz (a4), Meral Yuksel (a5), Şule Çetinel (a2) and Berrak Ç. Yeğen (a1)...

Abstract

High-fat diet (HFD) consumption leads to metabolic disorders, gastrointestinal dysfunction and intestinal dysbiosis. Antibiotics also disrupt the composition of intestinal microbiota. The aim of the present study was to investigate the impact of a short-term feeding with HFD on oxidative status, enteric microbiota, intestinal motility and the effects of antibiotics and/or melatonin treatments on diet-induced hepato-intestinal dysfunction and inflammation. Male Sprague–Dawley rats were pair-fed with either standard chow or HFD (45 % fat) and were given tap water or melatonin (4 mg/kg per d) or melatonin plus antibiotics (ABX; neomycin, ampicillin, metronidazole; each 1 g/l) in drinking water for 2 weeks. On the 14th day, colonic motility was measured and the next day intestinal transit was assessed using charcoal propagation. Trunk blood, liver and intestine samples were removed for biochemical and histopathological evaluations, and faeces were collected for microbiota analysis. A 2-week HFD feeding increased blood glucose level and perirenal fat weight, induced low-level hepatic and intestinal inflammation, delayed intestinal transit, led to deterioration of epithelial tight junctions and overgrowth of colonic bacteria. Melatonin intake in HFD-fed rats reduced ileal inflammation, colonic motility and perirenal fat accumulation. ABX abolished increases in fat accumulation and blood glucose, reduced ileal oxidative damage, suppressed HFD-induced overgrowth in colonic bacteria, and reversed HFD-induced delay in intestinal transit; however, hepatic neutrophil accumulation, hepatic injury and dysfunction were further enhanced. In conclusion, the results demonstrate that even a short-term HFD ingestion results in hepato-intestinal inflammatory state and alterations in bacterial populations, which may be worsened with antibiotic intake, but alleviated by melatonin.

Copyright

Corresponding author

*Corresponding author: Dr B. Ç. Yeğen, email byegen@marmara.edu.tr

References

Hide All
1.World Health Organization (2014) Global Status Report on Alcohol and Health, 2014. Geneva: World Health Organization.
2.Beltrán-Sánchez, H, Harhay, MO, Harhay, MM, et al. (2013) Prevalence and trends of metabolic syndrome in the adult US population, 1999–2010. J Am Coll Cardiol 62, 697703.
3.Little, TJ, Horowitz, M & Feinle-Bisset, C (2007) Modulation by high-fat diets of gastrointestinal function and hormones associated with the regulation of energy intake: implications for the pathophysiology of obesity. Am J Clin Nutr 86, 531541.
4.Covasa, M & Ritter, RC (2000) Adaptation to high-fat diet reduces inhibition of gastric emptying by CCK and intestinal oleate. Am J Physiol Regul Integr Comp Physiol 278, R166R170.
5.Sabb, JE, Godfrey, PM & Brannon, PM (1986) Adaptive response of rat pancreatic lipase to dietary fat: effects of amount and type of fat. J Nutr 116, 892899.
6.Sagher, F, Dodge, J, Johnston, C, et al. (1991) Rat small intestinal morphology and tissue regulatory peptides: effects of high dietary fat. Br J Nutr 65, 2128.
7.Soares, A, Beraldi, EJ, Ferreira, PEB, et al. (2015) Intestinal and neuronal myenteric adaptations in the small intestine induced by a high-fat diet in mice. BMC Gastroenterol 15, 3.
8.Spannagel, A, Nakano, I, Tawil, T, et al. (1996) Adaptation to fat markedly increases pancreatic secretory response to intraduodenal fat in rats. Am J Physiol 270, G128G135.
9.Sukhotnik, I, Mor-Vaknin, N, Drongowski, RA, et al. (2004) Effect of dietary fat on early morphological intestinal adaptation in a rat with short bowel syndrome. Pediatr Surg Int 20, 419424.
10.Matsuzawa-Nagata, N, Takamura, T, Ando, H, et al. (2008) Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism 57, 10711077.
11.Miao, H, Chen, L, Hao, L, et al. (2015) Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1α pathway in chondrocytes. Sci Rep 5, 13092.
12.Conlon, M & Bird, A (2015) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7, 1744.
13.Delzenne, NM & Cani, PD (2011) Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr 31, 1531.
14.Ley, RE, Bäckhed, F, Turnbaugh, P, et al. (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102, 1107011075.
15.Ley, RE, Turnbaugh, PJ, Klein, S, et al. (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444, 10221023.
16.Turnbaugh, PJ, Ley, RE, Mahowald, MA, et al. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 10271031.
17.Hildebrandt, MA, Hoffmann, C, Sherrill-Mix, SA, et al. (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137, 17161724.
18.Chow, J, Lee, SM, Shen, Y, et al. (2010) Host–bacterial symbiosis in health and disease. Adv Immunol 107, 243274.
19.Ostaff, MJ, Stange, EF & Wehkamp, J (2013) Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Mol Med 5, 14651483.
20.Wells, JM, Brummer, RJ, Derrien, M, et al. (2017) Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 312, G171G193.
21.Cani, PD, Rodrigo, B, Knauf, C, et al. (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 14701481.
22.Konturek, P, Haziri, D, Brzozowski, T, et al. (2015) Emerging role of fecal microbiota therapy in the treatment of gastrointestinal and extra-gastrointestinal diseases. J Physiol Pharmacol 66, 483491.
23.Shen, W, Wolf, PG, Carbonero, F, et al. (2014) Intestinal and systemic inflammatory responses are positively associated with sulfidogenic bacteria abundance in high-fat-fed male C57BL/6J mice. J Nutr 144, 11811187.
24.Tilg, H & Moschen, AR (2015) Food, immunity, and the microbiome. Gastroenterology 148, 11071119.
25.Martinez, KB, Leone, V & Chang, EB (2017) Western diets, gut dysbiosis, and metabolic diseases: Are they linked? Gut Microbes 8, 130142.
26.Simrén, M (2014) IBS with intestinal microbial dysbiosis: a new and clinically relevant subgroup? Gut 63, 16851686.
27.Leone, V, Gibbons, SM, Martinez, K, et al. (2015) Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681689.
28.Jernberg, C, Löfmark, S, Edlund, C, et al. (2010) Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156, 32163223.
29.Blumberg, R & Powrie, F (2012) Microbiota, disease, and back to health: a metastable journey. Sci Transl Med 4, 137rv137.
30.Hviid, A, Svanström, H & Frisch, M (2011) Antibiotic use and inflammatory bowel diseases in childhood. Gut 60, 4954.
31.Ridaura, VK, Faith, JJ, Rey, FE, et al. (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214.
32.Hu, X, Wang, T, Liang, S, et al. (2015) Antibiotic-induced imbalances in gut microbiota aggravates cholesterol accumulation and liver injuries in rats fed a high-cholesterol diet. Appl Microbiol Biotechnol 99, 91119122.
33.Carvalho, B, Guadagnini, D, Tsukumo, D, et al. (2012) Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia 55, 28232834.
34.Membrez, M, Blancher, F, Jaquet, M, et al. (2008) Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 22, 24162426.
35.Navarro-Alarcón, M, Ruiz-Ojeda, FJ, Blanca-Herrera, RM, et al. (2014) Melatonin and metabolic regulation: a review. Food Funct 5, 28062832.
36.Nduhirabandi, F, Du Toit, EF, Blackhurst, D, et al. (2011) Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet-induced obesity. J Pineal Res 50, 171182.
37.Wolden-Hanson, T, Mitton, D, McCants, R, et al. (2000) Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology 141, 487497.
38.Celinski, K, Konturek, P, Slomka, M, et al. (2014) Effects of treatment with melatonin and tryptophan on liver enzymes, parameters of fat metabolism and plasma levels of cytokines in patients with non-alcoholic fatty liver disease–14 months follow up. J Physiol Pharmacol 65, 7582.
39.Hatzis, G, Ziakas, P, Kavantzas, N, et al. (2013) Melatonin attenuates high fat diet-induced fatty liver disease in rats. World J Hepatol 5, 160169.
40.Hussein, MR, Ahmed, OG, Hassan, AF, et al. (2007) Intake of melatonin is associated with amelioration of physiological changes, both metabolic and morphological pathologies associated with obesity: an animal model. Int J Exp Pathol 88, 1929.
41.Esteban-Zubero, E, Alatorre-Jimenez, MA, López-Pingarrón, L, et al. (2016) Melatonin’s role in preventing toxin-related and sepsis-mediated hepatic damage: a review. Pharmacol Res 105, 108120.
42.Hermoso, DAM, Shimada, LBC, Gilglioni, EH, et al. (2016) Melatonin protects female rats against steatosis and liver oxidative stress induced by oestrogen deficiency. Life Sci 157, 178186.
43.Xu, P, Wang, J, Hong, F, et al. (2017) Melatonin prevents obesity through modulation of gut microbiota in mice. J Pineal Res 62, e12399.
44.Lam, YY, Mitchell, AJ, Holmes, AJ, et al. (2011) Role of the gut in visceral fat inflammation and metabolic disorders. Obesity 19, 21132120.
45.Isman, C, Yegen, B & Alican, I (2003) Methimazole-induced hypothyroidism in rats ameliorates oxidative injury in experimental colitis. J Endocrinol 177, 471476.
46.Ünlüer, EE, Alican, In, Yeğen, C, et al. (2000) The delays in intestinal motility and neutrophil infiltration following burn injury in rats involve endogenous endothelins. Burns 26, 335340.
47.Queipo-Ortuño, MI, Seoane, LM, Murri, M, et al. (2013) Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLOS ONE 8, e65465.
48.Hartman, AL, Lough, DM, Barupal, DK, et al. (2009) Human gut microbiome adopts an alternative state following small bowel transplantation. Proc Natl Acad Sci U S A 106, 1718717192.
49.Bradley, PP, Priebat, DA, Christensen, RD, et al. (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78, 206209.
50.Casini, A, Ferrali, M, Pompella, A, et al. (1986) Lipid peroxidation and cellular damage in extrahepatic tissues of bromobenzene-intoxicated mice. Am J Pathol 123, 520531.
51.Aykaç, G, Uysal, M, Yalçin, AS, et al. (1985) The effect of chronic ethanol ingestion on hepatic lipid peroxide, glutathione, glutathione peroxidase and glutathione transferase in rats. Toxicology 36, 7176.
52.Kolgazi, M, Cantali-Ozturk, C, Deniz, R, et al. (2015) Nesfatin-1 alleviates gastric damage via direct antioxidant mechanisms. J Surg Res 193, 111118.
53.Haklar, G, Ulukaya-Durakbaś, Ç, Yüksel, M, et al. (1998) Oxygen radicals and nitric oxide in rat mesenteric ischaemia-reperfusion: modulation by L-arginine and NG-nitro-L-arginine methyl ester. Clin Exp Pharmacol Physiol 25, 908912.
54.Faul, F, Erdfelder, E, Buchner, A, et al. (2013) G* Power Version 3.1. 7 [computer software]. Kiel: Uiversität Kiel.
55.Hotamisligil, GS (2006) Inflammation and metabolic disorders. Nature 444, 860867.
56.Hulsmans, M, Van Dooren, E & Holvoet, P (2012) Mitochondrial reactive oxygen species and risk of atherosclerosis. Curr Atheroscler Rep 14, 264276.
57.Lam, YY, Ha, CW, Campbell, CR, et al. (2012) Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLOS ONE 7, e34233.
58.de La Serre, CB, Ellis, CL, Lee, J, et al. (2010) Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 299, G440G448.
59.Ding, S, Chi, MM, Scull, BP, et al. (2010) High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE 5, e12191.
60.Bilski, J, Mazur-Bialy, AI, Brzozowski, B, et al. (2015) Moderate exercise training attenuates the severity of experimental rodent colitis: the importance of crosstalk between adipose tissue and skeletal muscles. Mediators Inflamm 2015, 605071.
61.Rodrigues, DF, do Carmo Henriques, MC, Oliveira, MC, et al. (2014) Acute intake of a high-fructose diet alters the balance of adipokine concentrations and induces neutrophil influx in the liver. J Nutr Biochem 25, 388394.
62.Hamilton, MK, Boudry, G, Lemay, DG, et al. (2015) Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol 308, G840G851.
63.Yoshimura, S, Nakashima, S, Tomiga, Y, et al. (2018) Short-and long-term effects of high-fat diet feeding and voluntary exercise on hepatic lipid metabolism in mice. Biochem Biophys Res Commun 507, 291296.
64.Cani, PD, Delzenne, NM, Amar, J, et al. (2008) Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathol Biol 56, 305309.
65.Turnbaugh, PJ, Bäckhed, F, Fulton, L, et al. (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213223.
66.Bäckhed, F, Manchester, JK, Semenkovich, CF, et al. (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104, 979984.
67.Woting, A & Blaut, M (2016) The intestinal microbiota in metabolic disease. Nutrients 8, 202.
68.Mardinoglu, A, Shoaie, S, Bergentall, M, et al. (2015) The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol 11, 834.
69.Zhang, C, Zhang, M, Pang, X, et al. (2012) Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J 6, 18481857.
70.Wexler, HM (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20, 593621.
71.Turnbaugh, PJ, Ridaura, VK, Faith, JJ, et al. (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1, 6ra14.
72.Honma, K, Hikosaka, M, Mochizuki, K, et al. (2016) Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver. Metabolism 65, 482491.
73.Kohsaka, A, Laposky, AD, Ramsey, KM, et al. (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6, 414421.
74.Trufakin, V, Shurlygina, A, Dushkin, M, et al. (2014) Effect of melatonin on cellular composition of the spleen and parameters of lipid metabolism in rats with alimentary obesity. Bull Exp Biol Med 158, 4245.
75.Jiménez-Aranda, A, Fernández-Vázquez, G, Campos, D, et al. (2013) Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. J Pineal Res 55, 416423.
76.Nduhirabandi, F, Huisamen, B, Strijdom, H, et al. (2014) Short-term melatonin consumption protects the heart of obese rats independent of body weight change and visceral adiposity. J Pineal Res 57, 317332.
77.Nduhirabandi, F, du Toit, EF & Lochner, A (2012) Melatonin and the metabolic syndrome: a tool for effective therapy in obesity-associated abnormalities? Acta Physiol 205, 209223.
78.Voigt, RM, Forsyth, CB, Green, SJ, et al. (2014) Circadian disorganization alters intestinal microbiota. PLOS ONE 9, e97500.
79.Al Mushref, M & Srinivasan, S (2013) Effect of high fat-diet and obesity on gastrointestinal motility. Ann Transl Med 1, 14.
80.Gallagher, TK, Baird, AW & Winter, DC (2009) Constitutive basal and stimulated human small bowel contractility is enhanced in obesity. Ann Surg Innov Res 3, 4.
81.Pecora, P, Suraci, C, Antonelli, M, et al. (1981) Constipation and obesity: a statistical analysis. Boll Soc Ital Biol Sper 57, 23842388.
82.vd Baan-Slootweg, OH, Liem, O, Bekkali, N, et al. (2011) Constipation and colonic transit times in children with morbid obesity. J Pediatr Gastroenterol Nutr 52, 442445.
83.Rao, SSC, Kavelock, R, Beaty, J, et al. (2000) Effects of fat and carbohydrate meals on colonic motor response. Gut 46, 205211.
84.Delgado-Aros, S, Locke, GR III Camilleri, M, et al. (2004) Obesity is associated with increased risk of gastrointestinal symptoms: a population-based study. Am J Gastroenterol 99, 18011806.
85.Million, M, Lagier, J-C, Yahav, D, et al. (2013) Gut bacterial microbiota and obesity. Clin Microbiol Infect 19, 305313.
86.Murphy, EF, Clarke, SF, Marques, TM, et al. (2013) Antimicrobials: strategies for targeting obesity and metabolic health? Gut Microbes 4, 4853.
87.An, HM, Park, SY, Lee, DK, et al. (2011) Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis 10, 116.
88.Million, M, Angelakis, E, Paul, M, et al. (2012) Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb Pathog 53, 100108.
89.Yin, Y-N, Yu, Q-F, Fu, N, et al. (2010) Effects of four bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol 16, 33943401.

Keywords

The effects of antibiotics and melatonin on hepato-intestinal inflammation and gut microbial dysbiosis induced by a short-term high-fat diet consumption in rats

  • Alper Yildirim (a1), Sevil Arabacı Tamer (a1), Duran Sahin (a1), Fatma Bagriacik (a1), Merve M. Kahraman (a1), Nilsu D. Onur (a1), Yusuf B. Cayirli (a1), Özlem T. Cilingir Kaya (a2), Burak Aksu (a3), Esra Akdeniz (a4), Meral Yuksel (a5), Şule Çetinel (a2) and Berrak Ç. Yeğen (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed