Skip to main content Accessibility help
×
Home

The effect of short-term calcium supplementation on biochemical markers of bone metabolism in healthy young adults

  • Fiona Ginty (a1), Albert Flynn (a1) and Kevin D. Cashman (a1)

Abstract

The influence of Ca supplementation of the usual diet for 14d on biochemical markers of bone turnover was investigated in healthy young adults aged 21–26 years. In a crossover study, eighteen subjects (five male and thirteen female) were randomly assigned to their self-selected diet (about 22 mmol Ca/d) or their self-selected diet with a 20 mmol/d Ca supplement (about 40 mmol Ca/d) for 14d followed by crossover to the alternative diet for a further 14d. During each dietary period fasting morning first void urine samples (last 3d) and fasting blood serum samples (morning of twelfth day) were collected. Ca supplementation reduced urinary excretion of pyridinoline (14%) and deoxypyridinoline (16%) (biochemical markers of bone resorption) but had no effect on biochemical markers of bone formation (serum osteocalcin and bone-specific alkaline phosphatase; EC 3.1.3.1). It is concluded that Ca supplementation of the usual diet in young adults suppresses bone resorption over a 2-week period. If sustained, this could result in suppression of the bone remodelling rate and an increase in bone mass over time. The findings of this short-term study with a relatively small number of young adults highlight the need for a longer-term intervention study of the effect of increased Ca intake on bone mass in this age group.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The effect of short-term calcium supplementation on biochemical markers of bone metabolism in healthy young adults
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The effect of short-term calcium supplementation on biochemical markers of bone metabolism in healthy young adults
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The effect of short-term calcium supplementation on biochemical markers of bone metabolism in healthy young adults
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author:Dr Kevin Cashman, fax +353 21 270244, email K.Cashman@UCC.ie

References

Hide All
Bonjour, JP, Carrie, AL, Ferrari, S, Clavien, H, Slosman, D & Theintz, G (1997) Calcium-enriched foods and bone mass growth in prepubertal girls: a randomised, double-blind, placebo-controlled trial. Journal of Clinical Investigation 99, 12871294.
Calabresi, E, Lasagni, L, Franceschelli, F, Bartolini, L & Serio, M (1994) Use of an internal standard to measure pyridinoline and deoxypyridinoline in urine (letter). Clinical Chemistry 40, 336337.
Chan, GM, Hoffman, K & McMurray, M (1995) Effects of dairy products on bone and body composition in pubertal girls. Journal of Pediatrics 126, 551556.
Colwell, R, Russell, RGG & Eastell, R (1993) Factors affecting the assay of urinary 3-hydroxypyridinium cross-links of collagen as markers of bone resorption. European Journal of Clinical Investigation 23, 341349.
Dawson-Hughes, B, Harris, S, Kramich, C, Dallal, G & Rasmussen, HM (1993) Calcium retention and hormone levels in black and white women on high- and low-calcium diets. Journal of Bone and Mineral Research 8, 779787.
Delmas, PD (1992) Clinical use of biochemical markers of bone remodelling in osteoporosis. Bone 13, S17S21.
Eastell, R, Robins, SP, Colwell, T, Assiri, AM, Riggs, BL & Russell, RG (1993) Evaluation of bone turnover in type I osteoporosis using biochemical markers specific for both bone formation and bone resorption. Osteoporosis International 3, 255260.
Englyst, HN & Cummings, JH (1988) Improved method for measurement of dietary fiber as non-starch polysaccharides in plant foods. Journal of the Association of Official Analytical Chemists 71, 808814.
Eriksen, EF, Gundersen, HJG, Melsen, F & Mosekilde, L (1984) Reconstruction of the formative site in iliac trabecular bone in 20 normal individuals employing a kinetic model for matrix and mineral apposition. Metabolic Bone Disease Related Research 5, 243252.
Eyre, DR (1992) New biomarkers of bone resorption. Journal of Clinical Endocrinology and Metabolism 74, 470AC.
Fehily, AM, Coles, RJ, Evans, WD & Elwood, PC (1992) Factors affecting bone density in young adults. American Journal of Clinical Nutrition 56, 579586.
Frost, HM (1973) The origin and nature of transients in human bone remodeling dynamics. In Clinical Aspects of Metabolic Bone Disease, pp. 124137 [Frame,, B, Parfitt, AM and Duncan, H, editors]. Amsterdam: Excerpta Medica.
Gregory, J, Foster, K, Tyler, H & Wiseman, M (1990) The Dietary and Nutritional Survey of British Adults. London: HM Stationery Office.
Hansen, MA, Overgaard, K, Riis, BJ & Christiansen, C (1991) Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12 year study. British Medical Journal 303, 961964.
Heaney, RP (1991) Calcium supplements: practical considerations. Osteoporosis International 1, 6571.
Heaney, RP (1994) The bone-remodeling transient: implications for the interpretation of clinical studies of bone mass change. Journal of Bone Mineral Research 9, 15151523.
Hui, SL, Slemenda, CW & Johnston, CC Jr (1989) Baseline measurement of bone mass predicts fracture in white women. Annals of Internal Medicine 111, 355361.
Institute of Medicine (1997) Dietary Reference Intakes: Calcium, Magnesium, Phosphorus, Vitamin D, and Fluoride. Washington, DC: Food and Nutrition Board, National Academy Press.
Irish Nutrition and Dietetic Institute (1990) Irish National Nutrition Survey 1990. Dublin: INDI.
Jackman, LA, Millane, SS, Martin, BR, Wood, OB, McCabe, GP, Peacock, M & Weaver, CM (1997) Calcium retention in relation to calcium intake and postmenarcheal age in adolescent females. American Journal of Clinical Nutrition 66, 327333.
Johnston, CC, Miller, JZ, Slemenda, CW, Reister, TK, Hui, S, Christian, JC & Peacock, M (1992) Calcium supplementation and increases in bone mineral density in children. New England Journal of Medicine 327, 8287.
Jones, B & Kenward, MG (1989) The 2 × 2 cross-over trial with continuous data. In Design and Analysis of Cross-Over Trials, pp. 1688. New York, NY: Chapman and Hall.
Katzman, DK, Bachrach, LK, Carter, DR & Marcus, R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. Journal of Clinical Endocrinology and Metabolism 73, 13321339.
Lee, WTK, Leung, SSF, Leung, DMY & Cheng, JCY (1996) A follow-up study on the effects of calcium-supplement withdrawal and puberty on bone acquisition of children. American Journal of Clinical Nutrition 64, 7177.
Lee, WTK, Leung, SSF, Leung, DMY, Tsang, HSY, Lau, L & Cheng, JCY (1995) A randomized double-blind controlled calcium supplementation trial, and bone and height acquisition in children. British Journal of Nutrition 74, 125139.
Lee, WTK, Leung, SSF, Leung, DMY, Wang, SH, Xu, YC, Zeng, WP & Chang, JC (1997) Bone mineral acquisition in low calcium intake children following the withdrawal of calcium supplement. Acta Paediatrica 86, 570576.
Lee, WTK, Leung, SSF, Wang, SH, Xu, YC, Zeng, WP, Lau, J, Oppenheimer, SJ & Cheng, JCY (1994) Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. American Journal of Clinical Nutrition 60, 744750.
Lloyd, T, Andon, MB, Rollings, N, Martel, JK, Landis, JR, Demers, LM, Eggli, DF, Kieselhorst, K & Kulin, HE (1993) Calcium supplementation and bone mineral density in adolescent girls. Journal of the American Medical Association 270, 841844.
McKane, WR, Khosla, S, Egan, KS, Robins, SP, Burritt, MF & Riggs, BL (1996) Role of calcium intake in modulating age-related increases in parathyroid function and bone resorption. Journal of Clinical Endocrinology and Metabolism 81, 16991703.
Matkovic, V, Fontana, D, Tominac, C, Goel, P & Chesnut, CH III (1990) Factors that influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. American Journal of Clinical Nutrition 52, 878888.
Matkovic, V & Heaney, RP (1992) Calcium balance during human growth: evidence for threshold behavior. American Journal of Clinical Nutrition 55, 992996.
Matkovic, V, Jelic, J, Wardlaw, GM, Illich, JZ, Goel, PK, Wright, JK, Andon, MB, Smith, KT & Heaney, RP (1994) Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Journal of Clinical Investigation 93, 799808.
Matkovic, V, Kostial, K, Simonovic, I, Buzina, R, Brodarec, A & Nordin, BEC (1979) Bone status and fracture rates in two regions of Yugoslavia. American Journal of Clinical Nutrition 32, 540549.
Melton, JL III, Eddy, DM & Johnston, CC Jr (1990) Screening for osteoporosis. Annals of Internal Medicine 112, 516528.
Paul, AA & Southgate, DAT (1978) McCance and Widdowson's The Composition of Foods, 4th ed. London: HM Stationery Office.
Pesce, A & Kaplan, LA (1987) Methods in Clinical Chemistry, p. 1021. St Louis, MO: C. V. Mosby Co.
Recker, RR, Davies, MK, Hinders, SM, Heaney, RP, Stegman, MR & Kimmel, DB (1992) Bone gain in young adult women. Journal of the American Medical Association 268, 24032408.
Robins, SP, Stead, DA & Duncan, A (1994) Precautions in using an internal standard to measure pyridinoline and deoxypyridinoline in urine (letter). Clinical Chemistry 40, 23222323.
Rubinacci, A, Divieti, P, Polo, RM, Zampino, M, Resimini, G & Tenni, R (1996) Effect of an oral calcium load on urinary markers of collagen breakdown. Journal of Endocrinological Investigation 19, 719726.
Shapses, SA, Robins, SP, Schwartz, EI & Chowdhury, H (1995) Short-term changes in calcium but not protein intake alter the rate of bone resorption in healthy subjects as assessed by urinary pyridinium cross-link excretion. Journal of Nutrition 125, 28142821.
Slemenda, CW, Peacock, M, Hui, S, Zhou, L & Johnston, CC (1997) Reduced rates of skeletal remodeling are associated with increased peak bone mineral density during the development of peak skeletal mass. Journal of Bone and Mineral Research 12, 676682.
Teegarden, D, Proulx, WR, Martin, BR, Zhao, J, McCabe, GP, Lyle, RM, Peacock, M, Slemenda, C, Johnston, CC & Weaver, CM (1995) Peak bone mass in young women. Journal of Bone Mineral Research 10, 711715.
Trudeau, DL & Freier, EF (1967) Determination of Ca in urine and serum by atomic absorption spectrophotometry (AAS). Clinical Chemistry 13, C101C114.
Van Dokkum, W (1995) The intake of selected minerals and trace elements in European countries. Nutrition Research Reviews 8, 271302.

Keywords

Related content

Powered by UNSILO

The effect of short-term calcium supplementation on biochemical markers of bone metabolism in healthy young adults

  • Fiona Ginty (a1), Albert Flynn (a1) and Kevin D. Cashman (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.