Skip to main content Accessibility help
×
Home

Effect of plasma insulin and branched-chain amino acids on skeletal muscle protein synthesis in fasted lambs

  • T. J. Wester (a1), G. E. Lobley (a2), L. M. Birnie (a1), L. A. Crompton (a3), S. Brown (a2), V. Buchan (a2), A. G. Calder (a2), E. Milne (a3) and M. A. Lomax (a4)...

Abstract

The increase in fractional rate of protein synthesis (Ks) in the skeletal muscle of growing rats during the transition from fasted to fed state has been explained by the synergistic action of a rise in plasma insulin and branched-chain amino acids (BCAA). Since growing lambs also exhibit an increase in Ks with level of feed intake, the objective of the present study was to determine if this synergistic relationship between insulin and BCAA also occurs in ruminant animals. Six 30 kg fasted (72 h) lambs (8 months of age) received each of four treatments, which were based on continuous infusion into the jugular vein for 6 h of: (1) saline (155 mmol NaCl/l); (2) a mixture of BCAA (0·778 μmol leucine, 0·640 μmol isoleucine and 0·693 μmol valine/min·kg); (3) 18·7 μmol glucose/min·kg (to induce endogenous insulin secretion); (4) co-infusion of BCAA and glucose. Within each period all animals received the same isotope of phenylalanine (Phe) as follows: (1) l-[1-13C]Phe; (2) l-phenyl-[ring 2H5]-alanine; (3) l-[15N]Phe; (4) l-[ring 2,6-3H]Phe. Blood was sampled serially during infusions to measure plasma concentrations of insulin, glucose and amino acids, and plasma free Phe isotopic activity; biopsies were taken 6 h after the beginning of infusions to determine Ks in m. longissimus dorsi and vastus muscle. Compared with control (saline-infused) lambs, Ks was increased by an average of 40 % at the end of glucose infusion, but this effect was not statistically significant in either of the muscles sampled. BCAA infusion, alone or in combination with glucose, also had no significant effect on Ks compared with control sheep. Ks was approximately 60 % greater for vastus muscle than for m. longissimus dorsi (P>0·01), regardless of treatment. It is concluded that there are signals other than insulin and BCAA that are responsible for the feed-induced increase in Ks in muscle of growing ruminant animals.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of plasma insulin and branched-chain amino acids on skeletal muscle protein synthesis in fasted lambs
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of plasma insulin and branched-chain amino acids on skeletal muscle protein synthesis in fasted lambs
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of plasma insulin and branched-chain amino acids on skeletal muscle protein synthesis in fasted lambs
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: fax + 44 020 759 42919, Email m.lomax@imperial.ac.uk

References

Hide All
Baillie, AG & Garlick, PJResponses of protein synthesis in different skeletal muscles to fasting and insulin in rats. Am J Physiol (1991) 260, E891E896.
Baillie, AG & Garlick, PJAttenuated responses of muscle protein synthesis to fasting and insulin in adult female rats. Am J Physiol (1992) 262, E1E5.
Barua, JM, Wilso, E, Downie, S, Weryk, B, Cuschieri, A & Rennie, MJThe effect of alanyl glutamine peptide supplementation on muscle protein synthesis in post-surgical patients receiving glutamine-free amino acids intravenously. Proc Nutr Soc (1992) 51, 115A.
Bennet, WM, Connacher, AA, Scrimgeour, CM, Jung, RT & Rennie, MJEuglycemic hyperinsulinemia augments amino acid uptake by human leg tissues during hyperaminoacidemia. Am J Physiol (1990) 259, E185E194.
Bequette, BJ, Kyle, CE, Crompton, LA, Anderson, SE & Hanigan, MDProtein metabolism in lactating goats subjected to the insulin clamp. J Dairy Sci (2002) 85, 15461555.
Biolo, G, Declan Fleming, RY & Wolfe, RRPhysiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest (1995) 95, 811819.
Calder, AG, Anderson, SE, Grant, I, McNurlan, MA & Garlick, PJThe determination of low phenylalanine enrichment (0·002–0·09 atom percent excess) after conversion to phenylethylamine, in relation to protein turnover studies by gas chromatography (electron ionisation) mass spectrometry. Rapid Commun Mass Spectrom (1992) 6, 421424.
Calder, AG & Smith, AStable isotope ratio analysis of leucine and ketoisocaproic acid in blood plasma by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom (1988) 2, 1416.
Cole, NA, Purdy, CW & Hallford, DMInfluence of fasting and postfast diet energy level on feed intake, feeding pattern and blood variables of lambs. J Anim Sci (1988) 66, 798805.
Crompton, LA & Lomax, MAThe relationship between hindlimb muscle protein metabolism and growth hormone, insulin, cortisol and thyroxine in growing lambs. Proc Nutr Soc (1987) 46, 45A.
Crompton, LA & Lomax, MA (1993) Hindlimb protein turnover and muscle protein synthesis in lambs: a comparison of techniques. Br J Nutr 69, 345348.
Davis, TA, Fiorotto, ML, Beckett, PR, Burrin, DG, Reeds, PJ, Wray-Cahen, D & Nguyen, HVDifferential effects of insulin on peripheral and visceral tissue protein synthesis in neonatal pigs. Am J Physiol (2001) 280, E770E779.
Dawson, JM, Buttery, PJ, Lammiman, MJ, Soar, JB & Essex, CPNutritional and endocrinological manipulation of lean deposition in forage-fed steers. Br J Nutr (1991) 66, 171185.
Douglas, RG, Gluckman, PD, Ball, K, Breier, B & Shaw, JHThe effects of infusion of insulin-like growth factor (IGF) I, IGF-II, and insulin on glucose and protein metabolism in fasted lambs. J Clin Invest (1991) 88, 614622.
Ferrando, AA, Williams, BD, Stuart, CA, Lane, HW & Wolfe, RROral branched-chain amino acids decrease whole-body proteolysis. J Parenter Enteral Nutr (1995) 19, 4754.
Fryburg, DA, Barret, EJ, Louard, RJ & Gelfand, RAEffect of starvation on human muscle protein metabolism and its response to insulin. Am J Physiol (1990) 259, E477E482.
Fryburg, DA, Jahn, LA, Hill, SA, Oliveras, DM & Barrett, EJInsulin and insulin-like growth factor-I enhance human skeletal muscle protein anabolism during hyperaminoacidemia by differential mechanisms. J Clin Invest (1995) 96, 17221729.
Garlick, PJ, Fern, M & Preedy, VRThe effect of insulin infusion and food intake on muscle protein synthesis in postabsorptive rats. Biochem J (1983) 210, 669676.
Garlick, PJ & Grant, IAmino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin: effect of branched-chain amino acids. Biochem J (1988) 254, 579584.
Garlick, PJ, McNurlan, MA, Bark, T, Lang, CH & Gelato, MCHormonal regulation of protein metabolism in relation to nutrition and disease. J Nutr (1998) 128, 356S359S.
Garlick, PJ, Maltin, CA, Baillie, AGS, Delday, MI & Grubb, DAFiber-type composition of nine rat muscles. II Relationship to protein turnover. Am J Physiol (1989) 257, E828E832.
Heinrikson, RL & Meredith, SCAmino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem (1984) 136, 6574.
Heitmann, RN & Bergman, ENIntegration of amino acid metabolism in sheep: effects of fasting and acidosis. Am J Physiol (1980) 239, E248E254.
Hillier, TA, Fryburg, DA, Jahn, LA & Barrett, EJExtreme hyperinsulinemia unmasks insulin's effect to stimulate protein synthesis in the human forearm. Am J Physiol (1998) 274, E1067E1074.
Hoskin, SO, Savary, IC, Zuur, G & Lobley, GEEffect of feed intake on ovine hindlimb protein metabolism based on thirteen amino acids and arterio–venous techniques. Br J Nutr (2001) 86, 577585.
Hoskin, SO, Savary-Auzeloux, IC, Calder, AG, Zuur, G & Lobley, GEEffect of feed intake on amino acid transfers across ovine hindquarters. Br J Nutr (2003) 89, 167179.
Jepson, MM, Bates, PC & Millward, DJThe role of insulin and thyroid hormones in the regulation of muscle growth and protein turnover in response to dietary protein in the rat. Br J Nutr (1988) 59, 397415.
Kriel, GV, Bryant, MJ & Lomax, MAEffect of dietary protein intake and intravenous glucose infusion on plasma concentrations of insulin-like growth factor-I in lambs. J Endocrinol (1992) 132, 195199.
Larbaud, D, Debras, E, Taillandier, D, Samuels, SE, Temparis, S, Champredon, C, Grizard, J & Attaix, DEuglycemic hyperinsulinemia and hyperaminoacidemia decrease skeletal muscle ubiquitin mRNA in goats. Am J Physiol (1996) 271, E505E512.
Lobley, GE, Bremner, DM, Nieto, R, Obitsu, T, Hotson Moore, A & Brown, DSTransfers of N metabolites across the ovine liver in response to short-term infusions of an amino acid mixture into the mesenteric vein. Br J Nutr (1998) 80, 371379.
Lobley, GE, Connell, A, Milne, E, Buchan, V, Calder, AG, Anderson, SE & Vint, HMuscle protein synthesis in response to testosterone administration in wether lambs. Br J Nutr (1990) 64, 691704.
Lobley, GE, Harris, PM, Skene, PA, Brown, D, Milne, E, Calder, AG, Anderson, SE, Garlick, PJ, Nevison, I & Connell, AResponses in tissue protein synthesis to sub- and supra-maintenance intake in young growing sheep: comparison of large-dose and continuous-infusion techniques. Br J Nutr (1992) 68, 373388.
Lobley, GE, Sinclair, KD, Grant, CM, Miller, L, Mantle, D, Calder, AG, Warkup, CC & Maltin, CAThe effects of breed and level of nutrition on whole-body and muscle protein metabolism in pure-bred Aberdeen Angus and Charolais beef steers. Br J Nutr (2000) 84, 275284.
Lomax, MA & Baird, GDBlood flow and nutrient exchange across the liver and gut of the dairy cow. Effects of lactation and fasting. Br J Nutr (1983) 49, 481496.
McNurlan, MA & Garlick, PJProtein metabolism in the cancer patient. Biochimie (1994) 76, 713717.
Maltin, CA, Lobley, CE, Grant, CM, Miller, LA, Kyle, DJ, Horgan, GW, Matthews, KR & Sinclair, KDFactors influencing beef eating quality – 2. Effects of nutritional regimen and genotype on muscle fibre characteristics. Anim Sci (2001) 72, 279287.
Midgley, AR, Rebau, RW & Niswender, GDRadioimmunoassays employing double antibody techniques. Acta Endocrinol (1969) 142, 247254.
Millward, DJ, Fereday, A, Gibson, NR & Pacy, PJPost-prandial protein metabolism. Baillieres Best Pract Res Clin Endocrinol Metab (1996) 10, 533549.
Nicholas, GA, Lobley, GE & Harris, CIUse of the constant infusion technique for measuring rates of protein synthesis in the New Zealand White rabbit. Br J Nutr (1977) 38, 117.
Oddy, VH, Lindsay, DB, Barker, PJ & Northrop, AJEffect of insulin on hindlimb and whole-body leucine and protein metabolism in fed and fasted sheep. Br J Nutr (1987) 58, 143154.
Papet, I, Glomot, F, Grizard, J & Arnal, MLeucine excess under conditions of low or compensated aminoacidemia does not change skeletal muscle and whole-body protein synthesis in suckling lambs during postprandial period. J Nutr (1992) 122, 23072315.
Preedy, VR & Garlick, PJThe response of muscle protein synthesis to nutrient intake in postabsorptive rats: the role of insulin and amino acids. Biosci Rep (1986) 6, 177183.
Reecy, JM, Williams, JE, Kerley, MS, MacDonald, RS, Thornton, WH Jr & Davis, JLThe effect of postruminal amino acid flow on muscle cell proliferation and protein turnover. J Anim Sci (1996) 74, 21582169.
Sandstrom, R, Svanberg, E, Hyltander, A, Haglind, E, Ohlsson, C, Zachrisson, H, Berglund, B, Lindholm, E, Brevinge, H & Lundholm, KThe effect of recombinant human IGF-I on protein metabolism in post-operative patients without nutrition compared to effects in experimental animals. Eur J Clin Invest (1995) 25, 784792.
Schaefer, AL, Davis, SR & Hughson, GAEstimation of tissue protein synthesis in sheep during sustained elevation of plasma leucine concentration by intravenous infusion. Br J Nutr (1986) 56, 281288.
Svanberg, E, Möller-Loswick, A-C, Matthews, DE, Körner, U, Andersson, M & Lunholm, KEffects of amino acids on synthesis and degradation of skeletal muscle proteins in humans. Am J Physiol (1996 a) 271, E718E724.
Svanberg, E, Zachrisson, H, Ohlsson, C, Iresjö, B-M & Lundholm, KGRole of insulin and IGF-I in activation of muscle protein synthesis after oral feeding. Am J Physiol (1996 b) 270, E614E620.
Tauveron, I, Larbaud, D, Champredon, C, Debras, E, Tesseraud, S, Bayle, G, Bonnet, Y, Thieblot, P & Grizard, JEffect of hyperinsulinemia and hyperaminoacidemia on muscle and liver protein synthesis in lactating goats. Am J Physiol (1994) 267, E877E885.
Tesseraud, S, Grizard, J, Debras, E, Papet, I, Bonnet, Y, Bayle, G & Champredon, CLeucine metabolism in lactating and dry goats: effect of insulin and substrate availability. Am J Physiol (1993) 265, E402E413.
Waalkes, TP & Udenfriend, SA fluorometric method for the estimation of tyrosine in plasma and tissues. J Lab Clin Med (1957) 50, 733736.
Watt, PW, Corbett, ME & Rennie, MJStimulation of protein synthesis in pig skeletal muscle by infusion of amino acids during constant insulin availability. Am J Physiol (1992 a) 263, E453E460.
Watt, PW, Hundal, HS, Downie, S & Rennie, MJGlutamine increase protein synthesis in heart, skeletal muscle, liver and gut of dexamethasone-treated rats. Proc Nutr Soc (1992 b) 51, 106A
Wester, TJ, Lobley, GE, Birnie, LM & Lomax, MAInsulin stimulates phenylalanine uptake across the hind limb in fed lambs. J Nutr (2000) 130, 608611.
Wray-Cahen, D, Metcalfe, JA, Backwell, FR, Bequette, BJ, Brown, DS, Sutton, JD & Lobley, GEHepatic response to increased exogenous supply of plasma amino acids by infusion into the mesentereic vein of Holstein–Friesian cows in late gestation. Br J Nutr (1997) 78, 913930.
Wray-Cahen, D, Nguyen, HV, Burrin, DG, Beckett, PR, Fiorotto, ML, Reeds, PR, Wester, TJ & Davis, TAResponse of skeletal muscle protein synthesis to insulin in suckling pigs decreases with development. Am J Physiol (1998) 275, E602E609.

Keywords

Related content

Powered by UNSILO

Effect of plasma insulin and branched-chain amino acids on skeletal muscle protein synthesis in fasted lambs

  • T. J. Wester (a1), G. E. Lobley (a2), L. M. Birnie (a1), L. A. Crompton (a3), S. Brown (a2), V. Buchan (a2), A. G. Calder (a2), E. Milne (a3) and M. A. Lomax (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.