Skip to main content Accessibility help
×
Home

Effect of n-3 PUFA supplementation at different EPA:DHA ratios on the spontaneously hypertensive obese rat model of the metabolic syndrome

  • Eunice Molinar-Toribio (a1), Jara Pérez-Jiménez (a1), Sara Ramos-Romero (a1) (a2), Marta Romeu (a3), Montserrat Giralt (a3), Núria Taltavull (a3), Mònica Muñoz-Cortes (a3), Olga Jáuregui (a4), Lucía Méndez (a5), Isabel Medina (a5) and Josep Lluís Torres (a1)...

Abstract

The increasing incidence of the metabolic syndrome (MetS), a combination of risk factors before the onset of CVD and type 2 diabetes, encourages studies on the role of functional food components such as long-chain n-3 PUFA as preventive agents. In the present study, we explore the effect of EPA and DHA supplementation in different proportions on spontaneously hypertensive obese (SHROB) rats, a model for the MetS in a prediabetic state with mild oxidative stress. SHROB rats were randomised into four groups (n 7), each supplemented with EPA/DHA at ratios of 1:1, 2:1 and 1:2, or soyabean oil as the control for 13 weeks. The results showed that in all the proportions tested, EPA/DHA supplementation significantly lowered total and LDL-cholesterol concentrations, compared with those of the control group. EPA/DHA supplementation at the ratios of 1:1 and 2:1 significantly decreased inflammation (C-reactive protein levels) and lowered oxidative stress (decreased excretion of urinary isoprostanes), mainly at the ratio of 1:2. The activity of antioxidant enzymes increased in erythrocytes, abdominal fat and kidneys, with magnitudes depending on the EPA:DHA ratio. PUFA mixtures from fish affected different MetS markers of CVD risk factors in SHROB rats, depending on the ratios of EPA/DHA supplementation. The activation of endogenous defence systems may be related to the reduction of inflammation and oxidative stress.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of n-3 PUFA supplementation at different EPA:DHA ratios on the spontaneously hypertensive obese rat model of the metabolic syndrome
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of n-3 PUFA supplementation at different EPA:DHA ratios on the spontaneously hypertensive obese rat model of the metabolic syndrome
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of n-3 PUFA supplementation at different EPA:DHA ratios on the spontaneously hypertensive obese rat model of the metabolic syndrome
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: J. Pérez-Jiménez, email jara.perez@ictan.csic.es

References

Hide All
1 Eckel, RH, Alberti, KGMM, Grundy, SM, et al. (2010) The metabolic syndrome. Lancet 375, 181183.
2 Festa, A, D'Agostino, R, Howard, G, et al. (2000) Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 402, 4247.
3 Armutcu, F, Ataymen, M, Atmaca, H, et al. (2008) Oxidative stress markers, C-reactive proteins and heat shock protein 70 levels in subjects with metabolic syndrome. Clin Chem Lab Med 46, 785790.
4 Aguilera, AA, Díaz, GH, Barcelata, ML, et al. (2004) Effects of fish oil on hypertension, plasma lipids and tumor necrosis factor-α in rats with sucrose-induced metabolic syndrome. J Nutr Biochem 15, 350357.
5 Huang, YJ, Fang, VS, Juan, CC, et al. (1997) Amelioration of insulin resistance and hypertension in a fructose-fed rat model with fish oil supplementation. Metabolism 46, 12521258.
6 Poudyal, H, Panchal, SK, Diwan, V, et al. (2011) Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog Lipids Res 50, 372387.
7 Lorente-Cebrián, AS, Costa, AGV, Navas-Carretero, S, et al. (2013) Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. J Physiol Biochem 69, 633651.
8 Burghardt, PR, Kemmerer, ES, Buck, BJ, et al. (2010) Dietary n-3:n-6 fatty acids ratio differentially influence hormonal signature in a rodent model of metabolic syndrome relative to healthy controls. Nutr Metab 7, 53.
9 Lluís, L, Taltavull, N, Muñoz-Cortés, M, et al. (2013) Protective effect of the omega-3 polyunsaturated fatty acids: eicosapentaenoic acid/docosahexaenoic acid 1:1 ratio on cardiovascular disease risk markers in rats. Lipids Health Dis 12, 140.
10 Méndez, L, Pazos, M, Gallardo, JM, et al. (2013) Reduced protein oxidation in Wistar rats supplemented with marine omega-3 PUFA. Free Radical Biol Med 55, 820.
11 Takaya, K, Ogawa, Y, Hiraoka, J, et al. (1996) Nonsense mutation of leptin receptor in the obese spontaneously hypertensive Koletsky rat. Nat Genet 14, 130131.
12 Ernsberger, P, Koletsky, RJ & Friedman, JE (1999) Molecular pathology in the obese spontaneous hypertensive Koletsky rats: a model of syndrome X. Ann N Y Acad Sci 892, 315318.
13 Aleixandre de Artiñano, A & Miguel Castro, M (2009) Experimental rat models to study the metabolic syndrome. Br J Nutr 102, 12461253.
14 Molinar-Toribio, E, Pérez-Jiménez, J, Ramos-Romero, S, et al. (2014) Cardiovascular-disease related parameters and oxidative stress in SHROB rats, a model for metabolic syndrome. PLOS ONE 9, e104637.
15 García-Hernández, VM, Gallar, M, Sánchez-Soriano, J, et al. (2013) Effect of omega-3 dietary supplements with different oxidation levels in the lipidic profile of women: a randomized controlled trial. Int J Food Sci Nutr 64, 9931000.
16 Cohen, G, Dembiec, D, Marcus, J, et al. (1970) Measurement of catalase activity in tissue extracts. Anal Biochem 1970, 3038.
17 Misra, HP & Fridovich, I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247, 31703175.
18 Goldberg, DM & Spooner, RJ (1983) Glutathione reductase. In Methods of Enzymatic Analysis, 3rd ed., pp. 258265 [Bergmeyer, HU, editor]. Weinheim, Germany: Verlag Chemie.
19 Wheeler, CR, Salzman, JA, Elsayed, NM, et al. (1990) Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Biochem 184, 193199.
20 Hissin, PJ & Hilf, RA (1976) Fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74, 214226.
21 Drabkin, D & Austin, J (1935) Spectrophotometric studies. II. Preparations from washed blood cells; nitric oxide hemoglobin and sulfhemoglobin. J Biol Chem 112, 5165.
22 Bradford, MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248254.
23 Langhorst, ML, Hastings, MJ, Yokoyama, WH, et al. (2010) Determination of F2-isoprostanes in urine by online solid phase extraction coupled to liquid chromatography with tandem mass spectrometry. J Agric Food Chem 58, 66146620.
24 Masoodi, M & Nicolaou, A (2006) Lipidomic analysis of twenty-seven prostanoids and isoprostanes by liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 20, 30233029.
25 Lombardo, YB & Chicco, AG (2006) Effects of dietary polyunsaturated dietary n-3 fatty acids on dyslipidaemia and insulin resistance in rodents and humans. A review. J Nutr Biochem 17, 113.
26 Wei, MY & Jacobson, TA (2011) Effects of eicosapentaenoic acid versus docosahexaenoic acid on serum lipids: a systematic review and meta-analysis. Curr Atheroscler Rep 13, 474483.
27 Yudkin, JS, Steuhower, CDA, et al. (1999) C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscl Throm Vas 19, 972978.
28 Willerson, JT & Ridker, PM (2004) Inflammation as a cardiovascular risk factor. Circulation 109, 210.
29 Serhan, CN, Hong, S, Gronert, K, et al. (2002) Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 196, 10251037.
30 Serhan, CN, Gotlinger, K, Hong, S, et al. (2006) Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Inmunol 176, 18481859.
31 Yan, Y, Jiang, W, Spinetti, T, et al. (2013) Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38, 11541163.
32 Mozaffrian, D & Wu, JHY (2012) (n-3) Fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? J Nutr 142, 614625.
33 Vemuri, M, Kelley, DS, Mackey, BD, et al. (2007) Docosahexaenoic acid (DHA) but not eicosapentaenoic acid (EPA) prevents trans-10, cis-12 conjugated linoleic acid (CLA)-induced insulin resistance in mice. Metab Syndr Relat Disord 5, 315322.
34 Castellano, CA, Audet, I, Laforest, JP, et al. (2010) Fish oil diets do not improve insulin sensitivity and secretion in healthy adult male pigs. Br J Nutr 103, 189196.
35 Fedor, D & Kelley, DS (2009) Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr 12, 138146.
36 Jahn, U, Galano, JM & Durand, T (2008) Beyond prostaglandins-chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew Chem Int Ed 47, 58945955.
37 Roberts, LJ & Morrow, JD (2000) Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo . Free Radic Biol Med 28, 505513.
38 Ferreira de Castro, GS, Dos Santos, RA, Portari, GV, et al. (2012) Omega-3 improves glucose tolerance but increases lipid peroxidation and DNA damage in hepatocytes of fructose-fed rats. Appl Physiol Nutr Metab 37, 233240.
39 Serini, S, Fasano, E, Piccioni, E, et al. (2011) Differential anti-cancer effects of purified EPA and DHA and possible mechanisms involved. Curr Med Chem 18, 40654075.
40 Serrín, E, Bizarro, A, Piccioni, E, et al. (2012) EPA and DHA differentially affect in vitro inflammatory cytokine release by peripheral blood mononuclear cells from Alzheimer's patients. Curr Alzheimer Res 9, 913923.
41 Caputo, M, Zirpoli, H, Torino, G, et al. (2011) Selective regulation of UGT1A1 and SREBP-1c mRNA expression by docosahexaenoic, eicosapentaenoic, and arachidonic acids. J Cell Physiol 226, 187193.
42 Caputo, M, Eletto, D, Torino, G, et al. (2008) Cooperation of docosahexaenoic acid and vitamin E in the regulation of UDP-glucuronosyltransferase mRNA expression. J Cell Physiol 215, 765770.

Keywords

Type Description Title
WORD
Supplementary materials

Molinar-Toribio supplementary material
Tables S1-S2 and Figures S1-S2

 Word (202 KB)
202 KB

Effect of n-3 PUFA supplementation at different EPA:DHA ratios on the spontaneously hypertensive obese rat model of the metabolic syndrome

  • Eunice Molinar-Toribio (a1), Jara Pérez-Jiménez (a1), Sara Ramos-Romero (a1) (a2), Marta Romeu (a3), Montserrat Giralt (a3), Núria Taltavull (a3), Mònica Muñoz-Cortes (a3), Olga Jáuregui (a4), Lucía Méndez (a5), Isabel Medina (a5) and Josep Lluís Torres (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed