Skip to main content Accessibility help
×
Home

Effect of glycomacropeptide fractions on cholecystokinin and food intake

  • Jennifer B. Keogh (a1), Brad W. Woonton (a2), Cheryl M. Taylor (a2), Filip Janakievski (a2), Kirthi Desilva (a2) and Peter M. Clifton (a1)...

Abstract

Glycomacropeptide (GMP) is the hydrophilic 64-amino acid C-terminal glycopeptide released into cheese whey when κ-casein is cleaved by chymosin. GMP exists as a mixture of different glycoforms due to the carbohydrates sialic acid (N-acetylneuraminic acid, NeuNAc), galactose (Gal), galactosamine and glucosamine attached by O-glycosidic linkages. GMP reportedly stimulates the release of cholecystokinin (CCK), which may promote satiety. The objectives of the present study were to manufacture three glycoforms of GMP, minimally glycosylated GMP (3·5 (sd 0·1) % NeuNAc and 1·5 (sd 0·1) % Gal), glycosylated GMP (12·0 (sd 0·3) % NeuNAc and 4·2 (sd 0·2) % Gal) and a GMP-depleted whey protein concentrate, and to assess the effects of these fractions relative to glucose on CCK, subjective measures of satiety and food intake. In a randomised double-blind acute study, twenty overweight/obese males (56·9 (sd 7·2) years, 97·4 (sd 8·1) kg, 31·5 (sd 3·0) kg/m2) were recruited to consume four 50 g preloads (two GMP preparations, GMP-depleted whey and glucose) containing 895 kJ. Blood samples and subjective measures of satiety were collected before and at 15, 30, 60, 90, 120 and 180 min after the consumption of preload, and CCK levels were measured. A lunchtime meal of hot food was provided from which subjects ate ad libitum until satisfied. Energy and nutrient intakes from the food consumed were calculated. There was no significant difference in CCK levels, subjective measures of satiety or food intake between treatments at the given preload level. These results suggest that the protein fractions at the dose employed do not influence satiety, CCK levels or energy intake at a subsequent meal.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of glycomacropeptide fractions on cholecystokinin and food intake
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of glycomacropeptide fractions on cholecystokinin and food intake
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of glycomacropeptide fractions on cholecystokinin and food intake
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Jennifer B. Keogh, fax +61 883038899, email jennifer.keogh@csiro.au

References

Hide All
1Nakano, T, Silva-Hernandez, E, Ikawa, N, et al. (2002) Purification of kappa-casein glycomacropeptide from sweet whey with undetectable level of phenylalanine. Biotechnol Prog 18, 409412.
2Silva-Hernandez, E, Nakano, T & Ozimek, L (2002) Isolation and analysis of kappa-casein glycomacropeptide from goat sweet whey. J Agric Food Chem 27, 20342038.
3Mangel, AW & Koegel, A (1984) Effects of peptides on gastric emptying. Am J Physiol 246, G342G345.
4Yvon, M, Beucher, S, Guilloteau, P, et al. (1994) Effects of caseinomacropeptide (CMP) on digestion regulation. Reprod Nutr Dev 34, 527537.
5Degen, L, Matzinger, D, Drewe, J & Beglinger, C (2001) The effect of cholecystokinin in controlling appetite and food intake in humans. Peptides 22, 12651269.
6Chabance, B, Marteau, P, Rambaud, JC, et al. (1998) Casein peptide release and passage to the blood in humans during digestion of milk or yogurt. Biochimie 80, 155165.
7Royle, PJ, McIntosh, GH & Clifton, PM (2008) Whey protein isolate and glycomacropeptide decrease weight gain and alter body composition in male Wistar rats. Br J Nutr 100, 8893.
8Burton-Freeman, BM (2008) Glycomacropeptide (GMP) is not critical to whey-induced satiety, but may have a unique role in energy intake regulation through cholecystokinin (CCK). Physiol Behav 28, 379387.
9Gustafson, DR, McMahon, DJ, Morrey, J, et al. (2001) Appetite is not influenced by a unique milk peptide: caseinomacropeptide (CMP). Appetite 36, 157163.
10Honda, S, Yamamoto, K, Suzuki, S, et al. (1991) High-performance capillary zone electrophoresis of carbohydrates in the presence of alkaline earth metal ions. J Chromatogr 588, 327333.
11Suzuki, S, Yamamoto, M, Kuwahara, Y, et al. (1998) Separation of 1-phenyl-3-methyl-5-pyrazolone derivatives of monosaccharides by capillary electrochromatography. Electrophoresis 19, 26822688.
12Stunkard, AJ & Messick, S (1985) The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res 29, 7183.
13Bowen, J, Noakes, M & Clifton, PM (2007) Appetite hormones and energy intake in obese men after consumption of fructose, glucose and whey protein beverages. Int J Obes (Lond) 31, 16961703.
14Flint, A, Raben, A, Blundell, JE, et al. (2000) Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord 24, 3848.
15Bowen, J, Noakes, M, Trenerry, C, et al. (2006) Energy intake, ghrelin, and cholecystokinin after different carbohydrate and protein preloads in overweight men. J Clin Endocrinol Metab 91, 14771483.
16Bowen, J, Noakes, M & Clifton, PM (2006) Appetite regulatory hormone responses to various dietary proteins differ by body mass index status despite similar reductions in ad libitum energy intake. J Clin Endocrinol Metab 91, 913919.
17Veldhorst, MA, Nieuwenhuizen, AG, Hochstenbach-Waelen, A, et al. (2009) Effects of complete whey–protein breakfasts versus whey without GMP-breakfasts on energy intake and satiety. Appetite 52, 388395.
18Veldhorst, MA, Nieuwenhuizen, AG, Hochstenbach-Waelen, A, et al. (2009) Dose-dependent satiating effect of whey relative to casein or soy. Physiol Behav 96, 675682.
19Veldhorst, MA, Nieuwenhuizen, AG, Hochstenbach-Waelen, A, et al. (2009) A breakfast with alpha-lactalbumin, gelatin, or gelatin+TRP lowers energy intake at lunch compared with a breakfast with casein, soy, whey, or whey-GMP. Clin Nutr 28, 147155.
20Lam, SM, Moughan, PJ, Awati, A, et al. (2009) The influence of whey protein and glycomacropeptide on satiety in adult humans. Physiol Behav 96, 162168.
21Diepvens, K, Häberer, D & Westerterp-Plantenga, M (2008) Different proteins and biopeptides differently affect satiety and anorexigenic/orexigenic hormones in healthy humans. Int J Obes (Lond) 32, 510518.
22Zwirska-Korczala, K, Konturek, SJ, Sodowski, M, et al. (2007) Basal and postprandial plasma levels of PYY, ghrelin, cholecystokinin, gastrin and insulin in women with moderate and morbid obesity and metabolic syndrome. J Physiol Pharmacol 58, Suppl. 1, 1335.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed