Skip to main content Accessibility help
×
Home

Effect of dietary conjugated linoleic acid isomers on lipid metabolism in hamsters fed high-carbohydrate and high-fat diets

  • Elizabeth J. Tarling (a1), Kevin J. P. Ryan (a1), Andrew J. Bennett (a2) and Andrew M. Salter (a1)

Abstract

Dietary conjugated linoleic acids (CLA) have been reported to have a number of isomer-dependent effects on lipid metabolism including reduction in adipose tissue deposition, changes in plasma lipoprotein concentrations and hepatic lipid accumulation. The aim of this study was to compare the effect of individual CLA isomers against lipogenic and high ‘Western’ fat background diets. Golden Syrian hamsters were fed a high-carbohydrate rodent chow or chow supplemented with 17·25 % fat formulated to represent the type and amount of fatty acids found in a typical ‘Western’ diet (including 0·2 % cholesterol). Diets were further supplemented with 0·25 % (w/w) rapeseed oil, cis9, trans11 (c9,t11)-CLA or trans10, cis12 (t10,c12)-CLA. Neither isomer had a significant impact on plasma lipid or lipoprotein concentrations. The t10,c12-CLA isomer significantly reduced perirenal adipose tissue depot mass. While adipose tissue acetyl CoA carboxylase and fatty acid synthase mRNA concentrations (as measured by quantitative PCR) were unaffected by CLA, lipoprotein lipase mRNA was specifically reduced by t10,c12-CLA, on both background diets (P < 0·001). This was associated with a specific reduction of sterol regulatory element binding protein 1c expression in perirenal adipose tissue (P = 0·018). The isomers appear to have divergent effects on liver TAG content with c9,t11-CLA producing lower concentrations than t10,c12-CLA. We conclude that t10,c12-CLA modestly reduces adipose tissue deposition in the Golden Syrian hamster independently of background diet and this may possibly result from reduced uptake of lipoprotein fatty acids, as a consequence of reduced lipoprotein lipase gene expression.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of dietary conjugated linoleic acid isomers on lipid metabolism in hamsters fed high-carbohydrate and high-fat diets
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of dietary conjugated linoleic acid isomers on lipid metabolism in hamsters fed high-carbohydrate and high-fat diets
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of dietary conjugated linoleic acid isomers on lipid metabolism in hamsters fed high-carbohydrate and high-fat diets
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Andrew M. Salter, fax +44 115 9516122, email Andrew.Salter@nottingham.ac.uk

References

Hide All
1Pariza, MW (2004) Perspective on safety and effectiveness of conjugated linoleic acid. Am J Cin Nutr 79, 1132S1136S.
2Bhattacharya, A, Banu, J, Rahman, M, et al. (2006) Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 17, 789810.
3Wahle, KW, Hey, SD & Rotondo, D (2004) Conjugated linoleic acids: are they beneficial or detrimental to health. Prog Lipid Res 43, 553587.
4Kelly, NS, Hubbard, NE & Erickson, KL (2007) Conjugated linoleic acid isomers and cancer. J Nutr 137, 25992607.
5Whigham, LD, Watras, AC & Schoeller, DA (2007) Efficacy of conjugated linoleic acid for reducing fat mass: a meta-analysis in humans. Am J Clin Nutr 85, 12031211.
6Griinari, JM, Corl, BA, Lacy, SH, et al. (2000) Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturase. J Nutr 130, 22852291.
7Park, Y, Storkson, JM, Albright, KJ, et al. (1999) Evidence that trans-10, cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 34, 235241.
8Ip, C, Banni, S, Angioni, E, et al. (1999) Conjugated linoleic acid-rich butter fat alters mammary gland morphogenesis and reduces cancer risk in rats. J Nutr 129, 21352142.
9Poirier, H, Niot, I, Clément, L, et al. (2005) Development of conjugated linoleic acid (CLA)-mediated lipoatrophic syndrome in the mouse. Biochimie 87, 7379.
10DeDeckere, EAM, van Amelsvoort, JMM, McNeill, GP, et al. (1999) Effects of conjugated linoleic acid (CLA) isomers on lipid levels and peroxisome proliferation in the hamster. Br J Nutr 82, 309317.
11Gavino, VC, Gavino, G, Leblanc, M-J, et al. (2000) An isomeric mixture of conjugated linoleic acids but not pure cis-9, trans-11-octadecadienoic acid affects body weight gain and plasma lipids in hamsters. J Nutr 130, 2729.
12Navarro, V, Zabala, A, Marcarulla, MT, et al. (2003) Effects of conjugated linoleic acid on body fat accumulation and serum lipids in hamsters fed an atherogenic diet. J Physiol Biochem 59, 193200.
13Zabala, A, Churruca, I, Marculla, MT, et al. (2004) The trans-10, cis-12 isomer of conjugated linoleic acid reduces hepatic triacylglycerol content without affecting lipogenic enzymes in hamsters. Br J Nutr 92, 383389.
14Valeille, K, Férézou, J, Amsler, G, et al. (2005) A cis-9, trans-11-conjugated linoleic acid-rich oil reduces the outcome of atherogenic process in hyperlipidemic hamster. Am J Physiol Heart Circ Physiol 289, H652H659.
15Macarulla, MT, Fernández-Quintela, A, Zabala, A, et al. (2005) Effects of conjugated linoleic acid on liver composition and fatty acid oxidation are isomer-dependent in hamster. Nutrition 21, 512519.
16Mitchell, PL, Langille, MA, Currie, DL, et al. (2005) Effect of conjugated linoleic acid isomers on lipoproteins and atherosclerosis in the Syrian Golden hamster. Biochim Biophys Acta 1734, 269276.
17Lock, AL, Horne, CAM, Bauman, DE, et al. (2005) Butter naturally enriched in conjugated linoleic acid and vaccenic acid alters tissue fatty acids and improves the plasma lipoprotein profile in cholesterol-fed hamsters. J Nutr 135, 19341939.
18Zabala, A, Churruca, I, Fernández-Quintela, A, et al. (2006) trans-10, cis-12 Conjugated linoleic acid inhibits lipoprotein lipase but increases the activity of lipogenic enzymes in adipose tissue from hamsters fed an atherogenic diet. Br J Nutr 95, 11121119.
19Bissonauth, V, Chouinard, Y, Marin, J, et al. (2006) The effects of t10, c12 CLA isomer compared with c9, t11 CLA isomer on lipid metabolism and body composition in hamsters. J Nutr Biochem 17, 597603.
20Wilson, TA, Nicolsi, RJ, Saati, A, et al. (2006) Conjugated linoleic acid isomers reduce blood cholesterol levels but not aortic cholesterol accumulation in hypercholesterolemic hamsters. Lipids 41, 4148.
21Zabala, A, Portillo, MP, Macarulla, MT, et al. (2006) Effects of cis-9, trans-11 and trans-10, cis-12 CLA isomers on liver and adipose tissue fatty acid profile in hamsters. Lipids 41, 9931001.
22LeDoux, M, Laloux, L, Fontaine, J-J, et al. (2007) Rumenic acid significantly reduces plasma levels of LDL and small dense LDL cholesterol in hamsters fed a cholesterol- and lipid-enriched semi-purified diet. Lipids 42, 135141.
23Ribot, J, Portillo, MP & Picó, C, et al. (2007) Effects of trans-10, cis-12 conjugated linoleic acid on the expression of uncoupling proteins in hamsters fed an atherogenic diet. Br J Nutr 97, 10741082..
24Salter, AM, Mangiapane, EH, Bennett, AJ, et al. (1998) The effect of different dietary fatty acids on lipoprotein metabolism: concentration-dependent effects of diets enriched in oleic, myristic, palmitic and stearic acids. Br J Nutr 79, 195202.
25Major, CA, Ryan, K, Bennett, AJ, et al. (2008) Inhibition of stearoyl coenzyme A desaturase activity induces hypercholesterolemia in the cholesterol-fed hamster. J Lipid Res 49, 14561465.
26Henderson, L, Gregory, J, Irving, K, et al. (2003) The National Diet & Nutrition Survey: Adults Aged 10 to 64 Years, vol. 2, pp. 5357. London: TSO.
27Hayes, KC, Pronczuk, A & Khosla, P (1995) A rationale for plasma cholesterol modulation by dietary fatty acids: modeling the human response in animals. J Nutr Biochem 6, 188194.
28Session, VA & Salter, AM (1994) The effects of different dietary fats and cholesterol on serum lipoprotein concentrations in hamsters. Biochim Biophys Acta 1211, 207214.
29Billett, MA, Bruce, JS, White, DA, et al. (2000) Interactive effects of dietary cholesterol and different saturated fatty acids on lipoprotein metabolism. Br J Nutr 84, 439447.
30Horton, JD, Goldstein, JL & Brown, MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109, 11251131.
31Magana, MM & Osborne, TF (1996) Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter. J Biol Chem 271, 3268932694.
32Bennett, MK, Toth, JI & Osborne, TF (2004) Selective association of sterol regulatory element-binding protein isoforms with target promoters in vivo. J Biol Chem 279, 3736037367.
33Amemiya-Kudo, M, Shimano, H, Hasty, AH, et al. (2002) Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes. J Lipid Res 43, 12201235.
34Schoonjans, K, Gelman, L, Haby, C, et al. (2000) Induction of LPL gene expression by sterols is mediated by a sterol regulatory element and is independent of the presence of multiple E boxes. J Mol Biol 304, 323334.
35Zhang, Y, Repa, JJ, Gauthier, K, et al. (2001) Regulation of lipoprotein lipase by the oxysterol receptors LXRα and LXRβ. J Biol Chem 276, 4301843024.
36Lehmann, JM, Kliewer, SA, Moore, LB, et al. (1997) Activation of the nuclear receptor LXRα by oxysterols defines a new hormone response pathway. J Biol Chem 272, 31373140.
37Costet, P, Luo, Y, Wang, N, et al. (2000) Sterol-dependent transactivation of the the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 275, 2824028245.
38Talukdar, S & Hillgartner, FB (2006) The mechanism mediating the activation of acetyl-coenzyme A carboxylase-alpha gene transcription by the liver X receptor agonist T0-901317. J Lipid Res 47, 24512461.
39Joseph, SB, Laffitte, BA, Patel, PH, et al. (2002) Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem 277, 1101911025.
40Simón, E, Macarulla, MT, Churruca, I, et al. (2006) Trans-10, cis-12 Conjugated linoleic acid prevents adiposity but not insulin resistance induced by an atherogenic diet in hamsters. J Nutr Biochem 17, 126131.
41Valeille, K, Gripois, D, Blouquit, M-F, et al. (2004) Lipid atherogenic risk markers can be more favourably influenced by cis-9, trans-11-octadecadienoate isomer than a conjugated linoleic acid mixture or fish oil in hamsters. Br J Nutr 91, 191199.
42Tricon, S, Burdge, GC, Kew, S, et al. (2004) Opposing effects of cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid on blood lipids in healthy humans. Am J Clin Nutr 80, 614620.
43Arbonés-Mainar, JM, Navarro, MA, Acín, S, et al. (2006) Trans-10, cis-12- and cis-9, trans-11-conjugated linoleic acid isomers selectively modify HDL-apolipoprotein composition in apolipoprotein E knockout mice. J Nutr 136, 353359.

Keywords

Effect of dietary conjugated linoleic acid isomers on lipid metabolism in hamsters fed high-carbohydrate and high-fat diets

  • Elizabeth J. Tarling (a1), Kevin J. P. Ryan (a1), Andrew J. Bennett (a2) and Andrew M. Salter (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed