Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T15:53:40.607Z Has data issue: false hasContentIssue false

The effect of catabolic doses of corticosterone on heat production in the growing rat

Published online by Cambridge University Press:  24 July 2007

Penny Coyer
Affiliation:
Nutrition Research Unit, Department of Human Nutrition, London School of Hygiene and Tropical Medicine, 4 St Pancras Way, London NW1 2PE
M. Cox
Affiliation:
Nutrition Research Unit, Department of Human Nutrition, London School of Hygiene and Tropical Medicine, 4 St Pancras Way, London NW1 2PE
J. P. W. Rivers
Affiliation:
Nutrition Research Unit, Department of Human Nutrition, London School of Hygiene and Tropical Medicine, 4 St Pancras Way, London NW1 2PE
D. J. Millward
Affiliation:
Nutrition Research Unit, Department of Human Nutrition, London School of Hygiene and Tropical Medicine, 4 St Pancras Way, London NW1 2PE
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of corticosterone treatment on energy balance and heat production was investigated in growing rats. Animals were treated with daily subcutaneous injections of a vehicle containing 0, 50 or 100 mg corticosterone/kg for 5 d.

2. Measurements of digestible energy intake and urinary energy losses showed that corticosterone treatment resulted in a depression of metabolizable energy intake due to elevated urinary energy losses resulting from massive glucosuria.

3. Measurements of the metabolizable energy intake and the change in carcass energy indicated that at 50 mg/kg energy deposition and heat production were reduced, whilst at 100 mg/kg energy deposition was completely abolished with heat production increased. Postprandial oxygen consumption was unchanged at 50 mg/kg and increased at 100 mg/kg.

4. Factorial analysis of these results based on reported values for the energy cost of protein and fat deposition indicated that (a) the depression of total heat production at 50 mg/kg could be entirely accounted for by the concomitant suppression of growth, and (b) the elevation of total and postprandial heat production at 100 mg/kg reflected a specific influence of corticosterone on thermogenesis.

5. The significance of these findings is discussed in the light of reports that corticosterone in low doses suppresses heat production.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

REFERENCES

Bellamy, D. (1964). Journal of Endocrinology 31, 8384.CrossRefGoogle Scholar
Boedihardjo, S. (1982). Studies on changes in acid and ketone body excretion in obese patients in starvation and on low energy diets. MSc Thesis, London School of Hygiene and Tropical Medicine.Google Scholar
Bray, G. A. (1982). Proceedings of the Nutrition Society 41, 95108.CrossRefGoogle Scholar
Bray, G. A. & York, D. A. (1979). Physiological Reviews 59, 719809.Google Scholar
Chopra, I. J. (1981). Monographs on Endocrinology 18, 59156430.Google Scholar
Coyer, P. A., Cox, M., Rivers, J. P. W. & Millward, D. J. (1984). Proceedings of the Nutrition Society 43, 75A.Google Scholar
Galpin, K. S., Henderson, R. G., James, W. P. T. & Trayhurn, P. (1983 a). Proceedings of the Nutrition Society 4, 159A.Google Scholar
Galpin, K. S., Henderson, R. G., James, W. P. T. & Trayhurn, P. (1983 b). Biochemical Journal 214, 265270.CrossRefGoogle Scholar
Hausberger, F. X. & Hausberger, B. C. (1960). American Journal of Clinical Nutrition 8, 671681.CrossRefGoogle Scholar
Hedburg, A. (1983). Acta Medica Scandinavica 672 (Suppl.), 715.CrossRefGoogle Scholar
Holt, S., York, D. A. & Fitzsimons, J. T. R. (1983). Biochemical Journal 214, 215223.Google Scholar
Kielanowski, J. & Kotarbinska, M. (1970). European Association for Animal Production Publication 13, 145148.Google Scholar
Lachance, J. P. & Page, E. (1953). Endocrinology 52, 5764.CrossRefGoogle Scholar
Livesey, G. (1984). British Journal of Nutrition 51, 1528.Google Scholar
Locke, R. M. & Nicholls, D. G. (1981). FEBS Letters 135, 249252.Google Scholar
McGilvery, R. W. (1970). Biochemistry: A Functional Approach. Philadelphia and London: W. B. Saunders.Google Scholar
Marchington, D., Rothwell, N. J., Stock, M. J. & York, D. A. (1983). Journal of Nutrition 113, 13951402.CrossRefGoogle Scholar
Miller, D. S. & Payne, P. R. (1959). British Journal of Nutrition 13, 501508.CrossRefGoogle Scholar
Millward, D. J., Bates, P. C., de Benoist, B., Brown, J. G., Cox, M., Halliday, D., Odedra, B. N., & Rennie, M. J. (1983 a). IVth International Symposium on Protein Metabolism and Nutrition VI, European Journal of Animal Production, no 31, pp. 6996.Google Scholar
Millward, D. J., Garlick, P. J., Nnanyelugo, D. O. & Waterlow, J. C. (1976). Biochemical Journal 156, 185188.Google Scholar
Millward, D. G., Odedra, B. & Bates, P. C. (1983 b). Biochemical Journal 216, 583587.Google Scholar
Munck, A. (1971). Perspectives in Biology and Medicine 14, 265289.Google Scholar
Odedra, B., Bates, P. C. & Millward, D. J. (1983). Biochemical Journal 214, 617627.Google Scholar
Odedra, B., Cox, M. & Millward, D. J. (1984). Proceedings of the Nutrition Society 43, 13A.Google Scholar
Odedra, B., Dalal, S. & Millward, D. J. (1982). Biochemical Journal 214, 363368.Google Scholar
Payne, P. R. & Waterlow, J. C. (1971). Lancet ii 201221.Google Scholar
Pullar, J. A. & Webster, A. J. F. (1977). British Journal of Nutrition 37, 355367.CrossRefGoogle Scholar
Rothwell, N. J., Saville, E. M. & Stock, M. J. (1982). American Journal of Physiology 243, R339–R346.Google Scholar
Rothwell, N. J., Saville, E. M. & Stock, M. J. (1983). American Journal of Physiology 245, 160165.Google Scholar
Rothwell, N. J. & Stock, M. J. (1981). Metabolism 30, 673678.CrossRefGoogle Scholar
Royal College of Physicians (1983). Journal of the Royal College of Physicians (London) 17, 565.Google Scholar
Steele, R. (1975). Handbook of Physiology, Section 7, vol. 6, pp. 135167. Baltimore MD: Williams and Wilkins.Google Scholar
Tomas, F. M., Munro, H. N. & Young, V. R. (1979). Biochemical Journal 178, 139149.CrossRefGoogle Scholar