Skip to main content Accessibility help
×
Home

Differential effects of proteins and carbohydrates on postprandial blood pressure-related responses

  • Karianna F. M. Teunissen-Beekman (a1) (a2), Janneke Dopheide (a1) (a2), Johanna M. Geleijnse (a1) (a3), Stephan J. L. Bakker (a1) (a4), Elizabeth J. Brink (a1) (a5), Peter W. de Leeuw (a6), Jan Serroyen (a7) and Marleen A. van Baak (a1) (a2)...

Abstract

Diet composition may affect blood pressure (BP), but the mechanisms are unclear. The aim of the present study was to compare postprandial BP-related responses to the ingestion of pea protein, milk protein and egg-white protein. In addition, postprandial BP-related responses to the ingestion of maltodextrin were compared with those to the ingestion of sucrose and a protein mix. We hypothesised that lower postprandial total peripheral resistance (TPR) and BP levels would be accompanied by higher plasma concentrations of nitric oxide, insulin, glucagon-like peptide 1 (GLP-1) and glucagon. On separate occasions, six meals were tested in a randomised order in forty-eight overweight or obese adults with untreated elevated BP. Postprandial responses of TPR, BP and plasma concentrations of insulin, glucagon, GLP-1 and nitrite, nitroso compounds (RXNO) and S-nitrosothiols (NO x ) were measured for 4 h. No differences were observed in TPR responses. Postprandial BP levels were higher after the ingestion of the egg-white-protein meal than after that of meals containing the other two proteins (P≤ 0·01). The ingestion of the pea-protein meal induced the highest NO x response (P≤ 0·006). Insulin and glucagon concentrations were lowest after the ingestion of the egg-white-protein meal (P≤ 0·009). Postprandial BP levels were lower after the ingestion of the maltodextrin meal than after that of the protein mix and sucrose meals (P≤ 0·004), while postprandial insulin concentrations were higher after the ingestion of the maltodextrin meal than after that of the sucrose and protein mix meals after 1–2 h (P≤ 0·0001). Postprandial NO x , GLP-1 and glucagon concentrations were lower after the ingestion of the maltodextrin meal than after that of the protein mix meal (P≤ 0·008). In conclusion, different protein and carbohydrate sources induce different postprandial BP-related responses, which may be important for BP management. Lower postprandial BP levels are not necessarily accompanied by higher NO x , insulin, glucagon or GLP-1 responses.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Differential effects of proteins and carbohydrates on postprandial blood pressure-related responses
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Differential effects of proteins and carbohydrates on postprandial blood pressure-related responses
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Differential effects of proteins and carbohydrates on postprandial blood pressure-related responses
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: K. F. M. Teunissen-Beekman, fax +31 43 36 70 976, email kfm.teunissen@maastrichtuniversity.nl

References

Hide All
1 Rebholz, CM, Friedman, EE, Powers, LJ, et al. (2012) Dietary protein intake and blood pressure: a meta-analysis of randomized controlled trials. Am J Epidemiol 176, Suppl. 7, S27S43.
2 Tielemans, SM, Altorf-van der Kuil, W, Engberink, MF, et al. (2013) Intake of total protein, plant protein and animal protein in relation to blood pressure: a meta-analysis of observational and intervention studies. J Hum Hypertens 27, 564571.
3 Teunissen-Beekman, KF & van Baak, MA (2013) The role of dietary protein in blood pressure regulation. Curr Opin Lipidol 24, 6570.
4 Dong, JY, Tong, X, Wu, ZW, et al. (2011) Effect of soya protein on blood pressure: a meta-analysis of randomised controlled trials. Br J Nutr 106, 317326.
5 Pal, S & Ellis, V (2011) Acute effects of whey protein isolate on blood pressure, vascular function and inflammatory markers in overweight postmenopausal women. Br J Nutr 105, 15121519.
6 Teunissen-Beekman, KF, Dopheide, J, Geleijnse, JM, et al. (2012) Protein supplementation lowers blood pressure in overweight adults: effect of dietary proteins on blood pressure (PROPRES), a randomized trial. Am J Clin Nutr 95, 966971.
7 Teunissen-Beekman, KF, Dopheide, J, Geleijnse, JM, et al. (2013) Blood pressure decreases more after high-carbohydrate meals than after high-protein meals in overweight adults with elevated blood pressure, but there is no difference after 4 weeks of consuming a carbohydrate-rich or protein-rich diet. J Nutr 143, 424429.
8 Bode-Boger, SM, Boger, RH, Galland, A, et al. (1998) l-Arginine-induced vasodilation in healthy humans: pharmacokinetic–pharmacodynamic relationship. Br J Clin Pharmacol 46, 489497.
9 Wang, B, Ni, Y, Zhong, J, et al. (2012) Effects of incretins on blood pressure: a promising therapy for type 2 diabetes mellitus with hypertension. J Diabetes 4, 2229.
10 Scherrer, U & Sartori, C (1997) Insulin as a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity. Circulation 96, 41044113.
11 Claessens, M, Calame, W, Siemensma, AD, et al. (2009) The effect of different protein hydrolysate/carbohydrate mixtures on postprandial glucagon and insulin responses in healthy subjects. Eur J Clin Nutr 63, 4856.
12 Gannon, MC & Nuttall, FQ (2010) Amino acid ingestion and glucose metabolism – a review. IUBMB Life 62, 660668.
13 van Loon, LJ, Saris, WH, Verhagen, H, et al. (2000) Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr 72, 96105.
14 Hall, WL, Millward, DJ, Long, SJ, et al. (2003) Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br J Nutr 89, 239248.
15 Farah, AE (1983) Glucagon and the circulation. Pharmacol Rev 35, 181217.
16 Ding, Y, Vaziri, ND, Coulson, R, et al. (2000) Effects of simulated hyperglycemia, insulin, and glucagon on endothelial nitric oxide synthase expression. Am J Physiol Endocrinol Metab 279, E11E17.
17 Farghali, H, Hodis, J, Kutinova-Canova, N, et al. (2008) Glucose release as a response to glucagon in rat hepatocyte culture: involvement of NO signaling. Physiol Res 57, 569575.
18 Altorf-van der Kuil, W, Engberink, MF, Brink, EJ, et al. (2010) Dietary protein and blood pressure: a systematic review. PLOS ONE 5, e12102.
19 Brown, CM, Dulloo, AG, Yepuri, G, et al. (2008) Fructose ingestion acutely elevates blood pressure in healthy young humans. Am J Physiol Regul Integr Comp Physiol 294, R730R737.
20 O'Brien, E, Mee, F, Atkins, N, et al. (1991) Accuracy of the SpaceLabs 90207 determined by the British Hypertension Society protocol. J Hypertens 9, 573574.
21 Azabji Kenfack, M, Lador, F, Licker, M, et al. (2004) Cardiac output by Modelflow method from intra-arterial and fingertip pulse pressure profiles. Clin Sci (Lond) 106, 365369.
22 Appeldoorn, MM, Venema, DP, Peters, TH, et al. (2009) Some phenolic compounds increase the nitric oxide level in endothelial cells in vitro . J Agric Food Chem 57, 76937699.
23 Qin, LQ, Xu, JY, Dong, JY, et al. (2013) Lactotripeptides intake and blood pressure management: a meta-analysis of randomised controlled clinical trials. Nutr Metab Cardiovasc Dis 23, 395402.
24 Trovati, M, Doronzo, G, Barale, C, et al. (2014) Leptin and vascular smooth muscle cells. Curr Pharm Des 20, 625634.
25 Li, X, Bazer, FW, Gao, H, et al. (2009) Amino acids and gaseous signaling. Amino Acids 37, 6578.
26 Westerbacka, J, Wilkinson, I, Cockcroft, J, et al. (1999) Diminished wave reflection in the aorta. A novel physiological action of insulin on large blood vessels. Hypertension 33, 11181122.
27 Funada, J, Takata, Y, Hashida, H, et al. (2010) Dysfunctional central hemodynamic regulation after daily meal intake in metabolic syndrome. Atherosclerosis 210, 268273.
28 Morifuji, M, Ishizaka, M, Baba, S, et al. (2010) Comparison of different sources and degrees of hydrolysis of dietary protein: effect on plasma amino acids, dipeptides, and insulin responses in human subjects. J Agric Food Chem 58, 87888797.
29 Anderson, GH, Tecimer, SN, Shah, D, et al. (2004) Protein source, quantity, and time of consumption determine the effect of proteins on short-term food intake in young men. J Nutr 134, 30113015.
30 Pal, S & Ellis, V (2010) The acute effects of four protein meals on insulin, glucose, appetite and energy intake in lean men. Br J Nutr 104, 12411248.
31 Nilsson, M, Stenberg, M, Frid, AH, et al. (2004) Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am J Clin Nutr 80, 12461253.
32 Nilsson, M, Holst, JJ & Bjorck, IM (2007) Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr 85, 9961004.
33 Ha, V, Sievenpiper, JL, de Souza, RJ, et al. (2012) Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension 59, 787795.
34 Visvanathan, R, Chen, R, Garcia, M, et al. (2005) The effects of drinks made from simple sugars on blood pressure in healthy older people. Br J Nutr 93, 575579.
35 Bidwell, AJ, Holmstrup, ME, Doyle, RP, et al. (2010) Assessment of endothelial function and blood metabolite status following acute ingestion of a fructose-containing beverage. Acta Physiol (Oxf) 200, 3543.
36 Kong, MF, Chapman, I, Goble, E, et al. (1999) Effects of oral fructose and glucose on plasma GLP-1 and appetite in normal subjects. Peptides 20, 545551.
37 Stanhope, KL, Griffen, SC, Bair, BR, et al. (2008) Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals. Am J Clin Nutr 87, 11941203.
38 Bowen, J, Noakes, M & Clifton, PM (2007) Appetite hormones and energy intake in obese men after consumption of fructose, glucose and whey protein beverages. Int J Obes (Lond) 31, 16961703.
39 Karamanlis, A, Chaikomin, R, Doran, S, et al. (2007) Effects of protein on glycemic and incretin responses and gastric emptying after oral glucose in healthy subjects. Am J Clin Nutr 86, 13641368.
40 Li, J, An, R, Zhang, Y, et al. (2012) Correlations of macronutrient-induced functional magnetic resonance imaging signal changes in human brain and gut hormone responses. Am J Clin Nutr 96, 275282.
41 Brands, MW & Manhiani, MM (2012) Sodium-retaining effect of insulin in diabetes. Am J Physiol Regul Integr Comp Physiol 303, R1101R1109.

Keywords

Differential effects of proteins and carbohydrates on postprandial blood pressure-related responses

  • Karianna F. M. Teunissen-Beekman (a1) (a2), Janneke Dopheide (a1) (a2), Johanna M. Geleijnse (a1) (a3), Stephan J. L. Bakker (a1) (a4), Elizabeth J. Brink (a1) (a5), Peter W. de Leeuw (a6), Jan Serroyen (a7) and Marleen A. van Baak (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed