Skip to main content Accessibility help
×
Home

Differences in iron requirements by concanavalin A-treated and anti-CD3-treated murine splenic lymphocytes

  • Solo R. Kuvibidila (a1), Maria Velez (a1), Lolie Yu (a1), Raj P. Warrier (a1) and B. Surendra Baliga (a2)...

Abstract

Fe availability is critical for optimal lymphocyte proliferation; however, the minimum required levels are unknown. Such information is valuable when assessing in vitro immune responses in Fe-deficient subjects, because serum (Fe) added to the culture medium may replete lymphocytes. To address this issue, splenic lymphocytes obtained from seventeen 3-month-old C57BL/6 mice were incubated without and with 1 mg/l concanavalin A or 50 μg/l anti-CD3 antibody in media that contained between 0·113 and 9·74 μmol Fe/l. Fe was provided by either fetal calf serum (FCS, 0–100 ml/l), newborn calf serum (NBCS, 0–100 ml/l), or NBCS (10 ml/l) plus ferric ammonium citrate. As expected, the rate of DNA synthesis increased with Fe levels (P<0·01). Maximum DNA synthesis was obtained with 2·26 μmol Fe/l (50 ml FCS/l) for concanavalin A and 0·895 μmol/l (20 ml FCS/l) for anti-CD3-treated cells. In serum-free media (0·113 μmol Fe/l), the proliferative responses to concanavalin A were below the background, while they rose 5·5-fold in anti-CD3-treated cells (P<0·05). In apotransferrin-supplemented media (0·13 μmol Fe/l), the proliferative responses to concanavalin A and anti-CD3 antibody were 18·6 and 71 %, respectively, of that obtained with 4·66 μmol Fe/l (100 ml FCS/l). Interleukin 2 secretion also followed the same trend as lymphocyte proliferation. Since differences between both mitogens persisted after FCS was substituted with NBCS, we can rule out an effect on ribonucleotide reductase activity, or by other serum growth factors. We speculate an Fe effect at an early step of T-cell activation. Data suggest that the minimum Fe concentration required for lymphocyte proliferation varies with the mitogen.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Differences in iron requirements by concanavalin A-treated and anti-CD3-treated murine splenic lymphocytes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Differences in iron requirements by concanavalin A-treated and anti-CD3-treated murine splenic lymphocytes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Differences in iron requirements by concanavalin A-treated and anti-CD3-treated murine splenic lymphocytes
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Solo R. Kuvibidila, fax +1 504 568 3078, email skuvib@LSUHSC.edu

References

Hide All
Abbas, AK, Lichtman, AH & Pober, JS (1997 a) T cell maturation in the thymus. In Cellular and Molecular Immunology, pp. 171193 [Abbas, AK, Lichman, AH and Pober, JS, editors]. Philadelphia, PA: W.B. Saunder Company.
Abbas, AK, Lichtman, AH & Pober, JS (1997 b) Maturation of B lymphocytes and expression of immunoglobulin genes. In Cellular and Molecular Immunology, pp. 6695 [Abbas, AK, Lichtman, AH and Pober, JS, editors]. Philadelphia, PA: W.B. Saunder Company.
Abbas, AK, Lichtman, AH & Pober, JS (1997 c) T cell antigen recognition and activation. In Cellular and Molecular Immunology, pp. 139170 [Abbas, AK, Lichtman, AH and Pober, JS, editors]. Philadelphia, PA: W.B. Saunder Company.
Alcantara, O, Obeid, L, Hannun, Y, Ponka, P & Boldt, DH (1994) Regulation of protein kinase C (PKC) expression by iron: effect of different iron compounds on PKC-beta and PKC-alpha gene expression and the role of the 5'-flanking region of the PKC-beta gene in the response to ferric transferrin. Blood 84, 35103517.
Brock, HJ (1981) The effect of iron and transferrin on the response of serum-free cultures of mouse lymphocytes to concanavalin and lipopolysaccharides. Immunology 43, 387392.
Brock, HJ (1992) Iron and the immune system. In Iron and Human Disease, pp. 161178 [Lauffer, RB, editor]. Boca Raton, FL: CRC Press.
Cazzola, M, Bergamaschi, G, Dezza, L & Arosio, P (1990) Manipulation of cellular iron metabolism for modulating normal and malignant cell proliferation: achievements and prospects. Blood 75, 19031919.
Furukawa, T, Naitoh, Y, Kohno, H, Tokinaga, R & Taketani, S (1992) Iron deprivation decreases ribonucleotide reductase and DNA synthesis. Life Sciences 50, 20592065.
Galan, P, Thibault, H, Preziosi, P & Herceberg, S (1992) Interleukin-2 production in iron-deficient children. Biological Trace Element Research 32, 421426.
Gao, J & Richardson, DR (2001) The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. IV: the mechanisms involved in inhibiting cell-cycle progression. Blood 98, 842850.
Golding, S & Young, SP (1995) Iron requirements of human lymphocytes: relative contribution of intra- and extra-cellular iron. Scandinavian Journal of Immunology 41, 229236.
Gross, RL, Reid, JVO, Newberne, PM, Burgess, B, Marston, R & Hift, W (1975) Depressed cell-mediated immunity in megaloblastic anemia due to folic acid deficiency. American Journal of Clinical Nutrition 28, 225232.
Haq, RU, Wereley, JP & Chitambar, CR (1995) Induction of apoptosis by iron deprivation in human leukemic CCRF-CEM cells. Experimental Hematology 23, 428432.
Hoffbrand, AV, Ganeshaguru, K, Hooton, JWL & Tattersall, MHN (1976) Effect of iron deficiency and desferrioxamine on DNA synthesis. British Journal of Haematology 33, 517526.
Kuvibidila, SR, Baliga, BS, Warrier, RP & Suskind, RM (1998) Iron deficiency reduces the hydrolysis of cell membrane phosphatidyl-inositol 4,5 bisphosphate during splenic lymphocyte activation in C57BL/6 mice. Journal of Nutrition 128, 10771083.
Kuvibidila, SR, Kitchens, D & Baliga, BS (1999) In vivo and in vitro iron deficiency reduces protein kinase C activity and translocation in murine splenic and purified T cells. Journal of Cellular Biochemistry 74, 468478.
Lederman, HM, Cohen, A, Lee, JWW, Freedman, MH & Gelfand, EW (1984) Deferoxamine: a reversible S-phase inhibitor of human lymphocyte proliferation. Blood 64, 748753.
Mainou-Fowler, T & Brock, JH (1985) Effect of iron deficiency on the response of mouse lymphocytes to concanavalin A: the importance of transferrin-bound iron. Immunology 54, 325332.
Munro, HB (1993) Differences among group means: one-way analysis of variance. In Statistical Methods for Health Care Research, 2nd ed., pp. 99128 [Munro, HB and Page, EB, editors]. Philadelphia, PA: J.B. Lippincott Company.
Nagase, F, Abo, T, Hiramatsu, K, Suzuki, S, Du, J & Nakashima, I (1998) Induction of apoptosis and tyrosine phosphorylation of cellular proteins in T cells and non-T cells by stimulation with concanavalin A. Microbiology and Immunology 42, 567574.
Omar, FO & Blakley, BR (1994) The effects of iron deficiency and iron overload on cell-mediated immunity in the mouse. British Journal of Nutrition 72, 899909.
Phillips, JL, Bodt, DH & Harper, J (1987) Iron-transferrin-induced increase in protein kinase C activity in CCRF-CEM cells. Journal of Cellular Physiology 132, 349353.
Scaccabarozzi, A, Arosio, P, Weiss, G, Valenti, L, Dongiovanni, P, Fracanzani, AL, Mattioli, M, Levi, S, Fiorelli, G & Fargion, S (2000) Relationship between TNF-α and iron metabolism in differentiating human monocytic THP-1 cells. British Journal of Haematology 110, 978984.
Thelander, L, Graslund, A & Thelander, M (1983) Continual presence of oxygen and iron required for mammalian ribonucleotide reduction. Possible regulation mechanism. Biochemical and Biophysical Research Communications 110, 859865.
Thibault, H, Galan, P, Selz, F, Preziosi, P, Olivier, C, Badoual, J & Hercberg, S (1993) The immune response in iron-deficient young children: effect of iron supplementation on cell-mediated immunity. European Journal of Pediatrics 152, 120124.

Keywords

Related content

Powered by UNSILO

Differences in iron requirements by concanavalin A-treated and anti-CD3-treated murine splenic lymphocytes

  • Solo R. Kuvibidila (a1), Maria Velez (a1), Lolie Yu (a1), Raj P. Warrier (a1) and B. Surendra Baliga (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.