Skip to main content Accessibility help
×
Home

Dietary N-acetylcysteine supplementation alleviates liver injury in lipopolysaccharide-challenged piglets

  • Dan Yi (a1), Yongqing Hou (a1), Lei Wang (a1), Binying Ding (a1), Zhengguo Yang (a1), Jiao Li (a1), Minhui Long (a1), Yulan Liu (a1) and Guoyao Wu (a2) (a3)...

Abstract

The present study was carried out to determine whether N-acetylcysteine (NAC) could modulate liver injury in a lipopolysaccharide (LPS)-challenged piglet model. For this purpose, eighteen piglets were randomly assigned to the control, LPS or NAC group. Piglets in the control and LPS groups were fed a basal diet, whereas those in the NAC group were fed the basal diet supplemented with 500 mg/kg NAC. On days 10, 13 and 20 of the trial, the LPS- and NAC-treated piglets were intraperitoneally administered LPS (100 μg/kg body weight), while the control group was administered the same volume of saline. On day 20 of the trial, blood samples were obtained 3 h after LPS or saline injection. On day 21, the piglets were killed to collect liver samples. Dietary NAC supplementation attenuated LPS-induced liver histomorphological abnormalities. Compared with the control group, in the LPS-challenged piglets, the activities of alanine aminotransferase and aspartate aminotransferase and the concentrations of H2O2, TNF-α, IL-6 and PGE2 were dramatically increased in the plasma and the activity of superoxide dismutase in the plasma and that of glutathione peroxidase in the liver were significantly decreased. The LPS challenge also increased the concentration of AMP and the ratio of AMP:ATP, but decreased adenylate energy charges and the levels of ATP and ADP. These adverse effects of the LPS challenge were ameliorated by NAC supplementation. Moreover, NAC inhibited the LPS-induced increases in the abundance of liver heat shock protein 70 and NF-κB proteins. In conclusion, these results suggest that dietary NAC supplementation alleviates LPS-induced liver injury by reducing the secretion of pro-inflammatory cytokines, increasing the antioxidative capacity and improving energy metabolism.

Copyright

Corresponding author

* Corresponding author: Dr Y. Hou, fax +86 27 83956175, email houyq777@yahoo.com.cn

References

Hide All
1 Nakao, A, Taki, S, Yasui, M, et al. (1994) The fate of intravenously injected endotoxin in normal rats and in rats with liver failure. Hepatology 19, 12511256.
2 He, P, Noda, Y & Sugiyama, K (2001) Green tea suppresses lipopolysaccharide-induced liver injury in d-galactosamine sensitized rats. J Nutr 131, 15601567.
3 Su, GL (2002) Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol 283, G256G265.
4 Masaki, T, Chiba, S, Tatsukawa, H, et al. (2004) Adiponectin protects LPS-Induced liver injury through modulation of TNF-α in KK-Ay obese mice. Hepatology 40, 177184.
5 Czaja, MJ, Flanders, KC, Biempica, L, et al. (1989) Expression of tumor necrosis factor-α and transforming growth factor-β1 in acute liver injury. Growth Factors 1, 219226.
6 Kamimura, S & Tsukamoto, H (1995) Cytokine gene expression by Kupffer cells in experimental alcoholic liver disease. Hepatology 22, 13041309.
7 Bellezzo, JM, Leingang, KA, Bulla, GA, et al. (1998) Modulation of lipopolysaccharide-mediated activation in rat Kupffer cells by antioxidants. J Lab Clin Med 121, 3674.
8 Chaudhri, G & Clark, IA (1989) Reactive oxygen species facilitate the in vitro and in vivo lipopolysaccharide-induced release of tumor necrosis factor. J Immunol 143, 12901294.
9 Wu, G, Fang, YZ, Yang, S, et al. (2004) Glutathione metabolism and its implications for health. J Nutr 134, 489492.
10 Wu, G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37, 117.
11 Fishbane, S, Durham, JH, Marzo, K, et al. (2004) N-Acetylcysteine in the prevention of radiocontrast-induced nephropathy. J Am Soc Nephrol 15, 251260.
12 Yu, BP (1994) Cellular defenses against damage from reactive oxygen species. Physiol Rev 74, 139162.
13 Hou, YQ, Wang, L, Zhang, W, et al. (2012) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43, 12331242.
14 Hou YQ, Wang L, Yi D, et al. (2012) N-Acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids (epublication ahead of print version 25 April 2012).
15 Hou, YQ, Wang, L, Ding, BY, et al. (2010) Dietary α-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids 39, 555564.
16 Hou, YQ, Yao, K, Wang, L, et al. (2011) Effects of α-ketoglutarate on energy status in the intestinal mucosa of weaned piglets chronically challenged with lipopolysaccharide. Br J Nutr 106, 357363.
17 Hou, YQ, Wang, L, Ding, BY, et al. (2011) Alpha-ketoglutarate and intestinal function. Front Biosci 16, 11861196.
18 Henneberg W & Stohmann F (1864) Beiträge zur Begründung einer rationellen Fütterung der Wiederkäuer, (Contributions to Establish a Rational Feeding of Ruminants), 2nd ed., pp. 342. Braunschweig: Schwetschtke u. Sohn.
19 Li, X, Rezaei, R, Li, P, et al. (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40, 11591168.
20 Haynes, TE, Li, P, Li, X, et al. (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37, 131142.
21 Kessel, A, Toube, E, Pavlotzky, E, et al. (2007) Treatment with glutamine is associated with down-regulation of Toll-like receptor-4 and myeloid differentiation factor 88 expression and decrease in intestinal mucosal injury caused by lipopolysaccharide endotoxaemia in a rat. Clin Exp Immunol 151, 341347.
22 Sukhotnik, I, Agam, M, Shamir, R, et al. (2007) Oral glutamine prevents gut mucosal injury and improves mucosal recovery following lipopolysaccharide endotoxemia in a rat. J Surg Res 143, 379384.
23 Uehara, K, Takahashi, T, Fujii, H, et al. (2005) The lower intestinal tract-specific induction of heme oxygenase-1 by glutamine protects against endotoxemic intestinal injury. Crit Care Med 33, 381390.
24 Boutry, C, Matsumoto, H, Bos, C, et al. (2012) Decreased glutamate, glutamine and citrulline concentrations in plasma and muscle in endotoxemia cannot be reversed by glutamate or glutamine supplementation: a primary intestinal defect? Amino Acids 43, 14851498.
25 Li, Q, Liu, Y, Che, Z, et al. (2012) Dietary l-arginine supplementation alleviates liver injury caused by Escherichia coli LPS in weaned pigs. Innate Immun 18, 804814.
26 Yi, D, Zeng, SM & Guo, YM (2012) A diet rich in n-3 polyunsaturated fatty acids reduced prostaglandin biosynthesis, ovulation rate, and litter size in mice. Theriogenology 78, 2838.
27 Yi, D, Zeng, SM & Guo, YM (2011) Decreased sperm quality in mice fed a diet with fish oil. J Anim Sci Biotechnol 2, 165173.
28 Atkinson, DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7, 40304034.
29 Wei, JW, Carroll, RJ, Harden, KK, et al. (2012) Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids 42, 20312035.
30 Fu, WJ, Stromberg, AJ, Viele, K, et al. (2010) Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology. J Nutr Biochem 21, 561572.
31 Matsuzaki, J, Kuwamura, M, Yamaji, R, et al. (2001) Inflammatory responses to lipopolysaccharide are suppressed in 40 % energy-restricted mice. J Nutr 131, 21392144.
32 Luster, MI, Germolec, DR, Yoshida, T, et al. (1994) Endotoxin-induced cytokine gene expression and excretion in the liver. Hepatology 19, 480488.
33 McClain, C, Hill, D, Schmidt, J, et al. (1993) Cytokines and alcoholic liver disease. Semin Liver Dis 13, 170182.
34 Muller, JM, Ziegler-Heitbrock, HWL & Baeuerle, PA (1993) Nuclear factor kappa B, a mediator of lipopolysaccharide effects. Immunobiology 187, 233256.
35 Finco, TS & Baldwin, AS (1995) Mechanistic aspects of NF-κB regulation: the emerging role of phosphorylation and proteolysis. Immunity 3, 263272.
36 Jaeschke, H (2000) Reactive oxygen and mechanisms of inflammatory liver injury. J Gastroenterol Hepatol 15, 718724.
37 Zafarullah, M, Li, WQ, Sylvester, J, et al. (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60, 620.
38 Hsu, DZ, Chiang, PJ, Chien, SP, et al. (2004) Parenteral sesame oil attenuates oxidative stress after endotoxin intoxication in rats. Toxicology 196, 147153.
39 Ben-Shaul, V, Sofer, Y & Bergman, M (1999) Lipopolysaccharide-induced oxidative stress in the liver: comparison between rat and rabbit. Shock 12, 288293.
40 Ravikumar, V, Shivashangari, KS & Devaki, T (2005) Effect of Tridax procumbens on liver antioxidant defense system during lipopolysaccharide-induced hepatitis in d-galactosamine sensitised rats. Mol Cell Biochem 269, 131136.
41 Beckmann, RP, Mizzen, LE & Welch, WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248, 850854.
42 Kregel, KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92, 21772186.
43 Sepponen, K & Poso, AR (2006) The inducible form of heat shock protein 70 in the serum, colon and small intestine of the pig: comparison to conventional stress markers. Vet J 171, 519524.
44 Menguy, R (1981) Role of gastric mucosal energy metabolism in the etiology of stress ulceration. World J Surg 5, 175180.
45 Sugino, K, Dohi, K, Yamada, K, et al. (1987) The role of lipid peroxidation in endotoxin-induced hepatic damage and the protective effect of antioxidants. Surgery 101, 746752.
46 Lancaster, JR Jr, Laster, SM & Gooding, LR (1989) Inhibition of target cell mitochondrial electron transfer by tumor necrosis factor. FEBS Lett 248, 169174.
47 Zhang, Y, Marcillat, O, Giulivi, C, et al. (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265, 1633016336.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed