Skip to main content Accessibility help
×
Home

Dietary magnesium, calcium:magnesium ratio and risk of reflux oesophagitis, Barrett’s oesophagus and oesophageal adenocarcinoma: a population-based case–control study

  • Qi Dai (a1), Marie M. Cantwell (a2), Liam J. Murray (a2), Wei Zheng (a1), Lesley A. Anderson (a2) and Helen G. Coleman (a2)...

Abstract

Evidence suggests a role of Mg and the ratio of Ca:Mg intakes in the prevention of colonic carcinogenesis. The association between these nutrients and oesophageal adenocarcinoma – a tumour with increasing incidence in developed countries and poor survival rates – has yet to be explored. The aim of this investigation was to explore the association between Mg intake and related nutrients and risk of oesophageal adenocarcinoma and its precursor conditions, Barrett’s oesophagus and reflux oesophagitis. This analysis included cases of oesophageal adenocarcinoma (n 218), Barrett’s oesophagus (n 212), reflux oesophagitis (n 208) and population-based controls (n 252) recruited between 2002 and 2005 throughout the island of Ireland. All the subjects completed a 101-item FFQ. Unconditional logistic regression analysis was applied to determine odds of disease according to dietary intakes of Mg, Ca and Ca:Mg ratio. After adjustment for potential confounders, individuals consuming the highest amounts of Mg from foods had significant reductions in the odds of reflux oesophagitis (OR 0·31; 95 % CI 0·11, 0·87) and Barrett’s oesophagus (OR 0·29; 95 % CI 0·12, 0·71) compared with individuals consuming the lowest amounts of Mg. The protective effect of Mg was more apparent in the context of a low Ca:Mg intake ratio. No significant associations were observed for Mg intake and oesophageal adenocarcinoma risk (OR 0·77; 95 % CI 0·30, 1·99 comparing the highest and the lowest tertiles of consumption). In conclusion, dietary Mg intakes were inversely associated with reflux oesophagitis and Barrett’s oesophagus risk in this Irish population.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary magnesium, calcium:magnesium ratio and risk of reflux oesophagitis, Barrett’s oesophagus and oesophageal adenocarcinoma: a population-based case–control study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary magnesium, calcium:magnesium ratio and risk of reflux oesophagitis, Barrett’s oesophagus and oesophageal adenocarcinoma: a population-based case–control study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary magnesium, calcium:magnesium ratio and risk of reflux oesophagitis, Barrett’s oesophagus and oesophageal adenocarcinoma: a population-based case–control study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr H. G. Coleman, fax +44 2890 235900, email h.coleman@qub.ac.uk

References

Hide All
1. Flatman, PW (1991) Mechanisms of magnesium transport. Annu Rev Physiol 53, 259271.
2. Wester, PO (1987) Magnesium. Am J Clin Nutr 45, Suppl. 5, 13051312.
3. Saris, NE, Mervaala, E, Karppanen, H, et al. (2000) Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta 294, 126.
4. Hartwig, A (2001) Role of magnesium in genomic stability. Mutat Res 475, 113121.
5. Gueux, E, Azais-Braesco, V, Bussiere, L, et al. (1995) Effect of magnesium deficiency on triacylglycerol-rich lipoprotein and tissue susceptibility to peroxidation in relation to vitamin E content. Br J Nutr 74, 849856.
6. Hans, CP, Chaudhary, DP & Bansal, DD (2003) Effect of magnesium supplementation on oxidative stress in alloxanic diabetic rats. Magnes Res 16, 1319.
7. Institute of Medicine & Food and Nutrition Board (1997) Dietary Reference Intakes: Calcium, Phosphorus, Magnesium, Vitamin D and Fluoride. Washington, DC: National Academies Press.
8. Dai, Q, Shrubsole, MJ, Ness, RM, et al. (2007) The relation of magnesium and calcium intakes and a genetic polymorphism in the magnesium transporter to colorectal neoplasia risk. Am J Clin Nutr 86, 743751.
9. Larsson, SC, Bergkvist, L & Wolk, A (2005) Magnesium intake in relation to risk of colorectal cancer in women. JAMA 293, 8689.
10. Folsom, AR & Hong, CP (2006) Magnesium intake and reduced risk of colon cancer in a prospective study of women. Am J Epidemiol 163, 232235.
11. van den Brandt, PA, Smits, KM, Goldbohm, RA, et al. (2007) Magnesium intake and colorectal cancer risk in the Netherlands Cohort Study. Br J Cancer 96, 510513.
12. Lin, J, Cook, NR, Lee, IM, et al. (2006) Total magnesium intake and colorectal cancer incidence in women. Cancer Epidemiol Biomarkers Prev 15, 20062009.
13. Li, K, Kaaks, R, Linseisen, J, et al. (2011) Dietary calcium and magnesium intake in relation to cancer incidence and mortality in a German prospective cohort (EPIC-Heidelberg). Cancer Causes Control 22, 13751382.
14. Wark, PA, Lau, R, Norat, T, et al. (2012) Magnesium intake and colorectal tumor risk: a case-control study and meta-analysis. Am J Clin Nutr 96, 622631.
15. Norman, DA, Fordtran, JS, Brinkley, LJ, et al. (1981) Jejunal and ileal adaptation to alterations in dietary calcium: changes in calcium and magnesium absorption and pathogenetic role of parathyroid hormone and 1,25-dihydroxyvitamin D. J Clin Invest 67, 15991603.
16. Hardwick, LL, Jones, MR, Brautbar, N, et al. (1991) Magnesium absorption: mechanisms and the influence of vitamin D, calcium and phosphate. J Nutr 121, 1323.
17. Domrongkitchaiporn, S, Ongphiphadhanakul, B, Stitchantrakul, W, et al. (2000) Risk of calcium oxalate nephrolithiasis after calcium or combined calcium and calcitriol supplementation in postmenopausal women. Osteoporos Int 11, 486492.
18. Green, JH, Booth, C & Bunning, R (2003) Acute effect of high-calcium milk with or without additional magnesium, or calcium phosphate on parathyroid hormone and biochemical markers of bone resorption. Eur J Clin Nutr 57, 6168.
19. Nielsen, FH, Milne, DB, Gallagher, S, et al. (2007) Moderate magnesium deprivation results in calcium retention and altered potassium and phosphorus excretion by postmenopausal women. Magnes Res 20, 1931.
20. Hoenderop, JG & Bindels, RJ (2005) Epithelial Ca2+ and Mg2+ channels in health and disease. J Am Soc Nephrol 16, 1526.
21. Karkkainen, MU, Wiersma, JW & Lamberg-Allardt, CJ (1997) Postprandial parathyroid hormone response to four calcium-rich foodstuffs. Am J Clin Nutr 65, 17261730.
22. Abrams, SA, Grusak, MA, Stuff, J, et al. (1997) Calcium and magnesium balance in 9-14-y-old children. Am J Clin Nutr 66, 11721177.
23. Dai, Q, Sandler, R, Barry, E, et al. (2012) Calcium, magnesium, and colorectal cancer. Epidemiology 23, 504505.
24. Dai, Q, Shu, XO, Deng, X, et al. (2013) Modifying effect of calcium/magnesium intake ratio and mortality: a population-based cohort study. BMJ Open 3, e002111.
25. Deng, X, Song, Y, Manson, JE, et al. (2013) Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med 11, 187.
26. Mulholland, HG, Murray, LJ, Anderson, LA, et al. (2011) Vitamin D, calcium and dairy intake, and risk of oesophageal adenocarcinoma and its precursor conditions. Br J Nutr 106, 732741.
27. Edgren, G, Adami, HO, Weiderpass, E, et al. (2013) A global assessment of the oesophageal adenocarcinoma epidemic. Gut 62, 14061414.
28. Bosetti, C, Levi, F, Ferlay, J, et al. (2008) Trends in oesophageal cancer incidence and mortality in Europe. Int J Cancer 122, 11181129.
29. El-Serag, HB, Sweet, S, Winchester, CC, et al. (2014) Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 63, 871880.
30. Ferlay, J, Soerjomataram, I, Dikshit, R, et al. (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136, E359E386.
31. Alexandropoulou, K, van Vlymen, J, Reid, F, et al. (2013) Temporal trends of Barrett’s oesophagus and gastro-oesophageal reflux and related oesophageal cancer over a 10-year period in England and Wales and associated proton pump inhibitor and H2RA prescriptions: a GPRD study. Eur J Gastroenterol Hepatol 25, 1521.
32. Luk, CP, Parsons, R, Lee, YP, et al. (2013) Proton pump inhibitor-associated hypomagnesemia: what do FDA data tell us? Ann Pharmacother 47, 773780.
33. Markovits, N, Loebstein, R, Halkin, H, et al. (2014) The association of proton pump inhibitors and hypomagnesemia in the community setting. J Clin Pharmacol 54, 889895.
34. Anderson, LA, Johnston, BT, Watson, RG, et al. (2006) Nonsteroidal anti-inflammatory drugs and the esophageal inflammation-metaplasia-adenocarcinoma sequence. Cancer Res 66, 49754982.
35. Anderson, LA, Watson, RG, Murphy, SJ, et al. (2007) Risk factors for Barrett’s oesophagus and oesophageal adenocarcinoma: results from the FINBAR study. World J Gastroenterol 13, 15851594.
36. Mulholland, HG, Cantwell, MM, Anderson, LA, et al. (2009) Glycemic index, carbohydrate and fiber intakes and risk of reflux esophagitis, Barrett’s esophagus, and esophageal adenocarcinoma. Cancer Causes Control 20, 279288.
37. Nayar, DS & Vaezi, MF (2004) Classifications of esophagitis: who needs them? Gastrointest Endosc 60, 253257.
38. Day, N, Oakes, S, Luben, R, et al. (1999) EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br J Cancer 80, Suppl. 1, 95103.
39. Harrington, KE, Robson, PJ, Kiely, M, et al. (2001) The North/South Ireland Food Consumption Survey: survey design and methodology. Public Health Nutr 4, 10371042.
40. Anderson, LA, Murphy, SJ, Johnston, BT, et al. (2008) Relationship between Helicobacter pylori infection and gastric atrophy and the stages of the oesophageal inflammation, metaplasia, adenocarcinoma sequence: results from the FINBAR case-control study. Gut 57, 734739.
41. Willett, W & Stampfer, MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124, 1727.
42. Murphy, SJ, Anderson, LA, Ferguson, HR, et al. (2010) Dietary antioxidant and mineral intake in humans is associated with reduced risk of esophageal adenocarcinoma but not reflux esophagitis or Barrett’s esophagus. J Nutr 140, 17571763.
43. Kubo, A, Levin, TR, Block, G, et al. (2008) Dietary antioxidants, fruits, and vegetables and the risk of Barrett’s esophagus. Am J Gastroenterol 103, 16141623.
44. Anderson, LA, Cantwell, MM, Watson, RG, et al. (2009) The association between alcohol and reflux esophagitis, Barrett’s esophagus, and esophageal adenocarcinoma. Gastroenterology 136, 799805.
45. O’Doherty, MG, Cantwell, MM, Murray, LJ, et al. (2011) Dietary fat and meat intakes and risk of reflux esophagitis, Barrett’s esophagus and esophageal adenocarcinoma. Int J Cancer 129, 14931502.
46. Rubenstein, JH, Morgenstern, H, McConell, D, et al. (2013) Associations of diabetes mellitus, insulin, leptin, and ghrelin with gastroesophageal reflux and Barrett’s esophagus. Gastroenterology 145, 12371244 e1–5.
47. Ryan, AM, Healy, LA, Power, DG, et al. (2008) Barrett esophagus: prevalence of central adiposity, metabolic syndrome, and a proinflammatory state. Ann Surg 247, 909915.
48. Fujita, T (2009) Modifiable factors related to Barrett esophagus. Ann Surg 249, 352353.
49. Leggett, CL, Nelsen, EM, Tian, J, et al. (2013) Metabolic syndrome as a risk factor for Barrett esophagus: a population-based case-control study. Mayo Clin Proc 88, 157165.
50. Iyer, PG, Borah, BJ, Heien, HC, et al. (2013) Association of Barrett’s esophagus with type II diabetes mellitus: results from a large population-based case-control study. Clin Gastroenterol Hepatol 11, 11081114 e5.
51. Nelsen, EM, Kirihara, Y, Takahashi, N, et al. (2012) Distribution of body fat and its influence on esophageal inflammation and dysplasia in patients with Barrett’s esophagus. Clin Gastroenterol Hepatol 10, 728734.
52. Poehlmann, A, Kuester, D, Malfertheiner, P, et al. (2012) Inflammation and Barrett’s carcinogenesis. Pathol Res Pract 208, 269280.
53. Dibaba, DT, Xun, P & He, K (2014) Dietary magnesium intake is inversely associated with serum C-reactive protein levels: meta-analysis and systematic review. Eur J Clin Nutr 68, 510516.
54. Ziegler, D (2005) Type 2 diabetes as an inflammatory cardiovascular disorder. Curr Mol Med 5, 309322.
55. Paolisso, G, Sgambato, S, Gambardella, A, et al. (1992) Daily magnesium supplements improve glucose handling in elderly subjects. Am J Clin Nutr 55, 11611167.
56. Paolisso, G, Sgambato, S, Pizza, G, et al. (1989) Improved insulin response and action by chronic magnesium administration in aged NIDDM subjects. Diabetes Care 12, 265269.
57. Fung, TT, Manson, JE, Solomon, CG, et al. (2003) The association between magnesium intake and fasting insulin concentration in healthy middle-aged women. J Am Coll Nutr 22, 533538.
58. Song, Y, Manson, JE, Buring, JE, et al. (2004) Dietary magnesium intake in relation to plasma insulin levels and risk of type 2 diabetes in women. Diabetes Care 27, 5965.
59. Guerrero-Romero, F, Tamez-Perez, HE, Gonzalez-Gonzalez, G, et al. (2004) Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial. Diabetes Metab 30, 253258.
60. Champagne, CM (2008) Magnesium in hypertension, cardiovascular disease, metabolic syndrome, and other conditions: a review. Nutr Clin Pract 23, 142151.
61. He, K, Liu, K, Daviglus, ML, et al. (2006) Magnesium intake and incidence of metabolic syndrome among young adults. Circulation 113, 16751682.
62. He, K, Song, Y, Belin, RJ, et al. (2006) Magnesium intake and the metabolic syndrome: epidemiologic evidence to date. J Cardiometab Syndr 1, 351355.
63. Dong, JY, Xun, P, He, K, et al. (2011) Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care 34, 21162122.
64. Colditz, GA, Manson, JE, Stampfer, MJ, et al. (1992) Diet and risk of clinical diabetes in women. Am J Clin Nutr 55, 10181023.
65. Lopez-Ridaura, R, Willett, WC, Rimm, EB, et al. (2004) Magnesium intake and risk of type 2 diabetes in men and women. Diabetes Care 27, 134140.
66. Larsson, SC & Wolk, A (2007) Magnesium intake and risk of type 2 diabetes: a meta-analysis. J Intern Med 262, 208214.
67. Schulze, MB, Schulz, M, Heidemann, C, et al. (2007) Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med 167, 956965.
68. Hans, CP, Chaudhary, DP & Bansal, DD (2002) Magnesium deficiency increases oxidative stress in rats. Indian J Exp Biol 40, 12751279.
69. Bussiere, FI, Gueux, E, Rock, E, et al. (2002) Protective effect of calcium deficiency on the inflammatory response in magnesium-deficient rats. Eur J Nutr 41, 197202.
70. Lee, HS & Jeon, SW (2014) Barrett esophagus in Asia: same disease with different pattern. Clin Endosc 47, 1522.
71. Hannon, EM, Kiely, M, Harrington, KE, et al. (2001) The North/South Ireland Food Consumption Survey: mineral intakes in 18-64-year-old adults. Public Health Nutr 4, 10811088.

Keywords

Type Description Title
WORD
Supplementary materials

Dai supplementary material
Tables S1-S2

 Word (28 KB)
28 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed