Skip to main content Accessibility help
×
Home

Dietary glycaemic index and glycaemic load among Australian children and adolescents: results from the 2011–2012 Australian Health Survey

  • Molly Jones (a1), Alan W. Barclay (a2), Jennie C. Brand-Miller (a1) (a2) (a3) and Jimmy Chun Yu Louie (a1) (a3) (a4)
  • Please note a correction has been issued for this article.

Abstract

This study aimed to examine the dietary glycaemic index (GI) and glycaemic load (GL) of Australian children and adolescents, as well as the major food groups contributing to GL, in the recent 2011–2012 Australian Health Survey. Plausible food intake data from 1876 children and adolescents (51 % boys), collected using a multiple-pass 24-h recall, were analysed. The GI of foods was assigned based on a step-wise published method using values from common GI databases. Descriptive statistics were calculated for dietary GI, GL and contribution to GL by food groups, stratified by age group and sex. Linear regression was used to test for trends across age groups for BMI, dietary GI and GL, and intakes of energy, nutrients and food groups. Pearson’s χ 2 test was used to test for differences between age groups for categorical subject characteristic variables. Mean dietary GI and GL of participants were 55·5 (sd 5·3) and 137·4 (sd 50·8), respectively. The main contributors to dietary GL were starchy foods: breads, cereal-based dishes, breakfast cereals, flours, grains and potatoes accounted for 41 % of total GL. Sweetened beverages, fruit and vegetable juices/drinks, cake-type desserts and sweet biscuits contributed 15 %. No significant difference (at P<0·001) was observed between sexes. In conclusion, Australian children and adolescents appear to consume diets with a lower GI than European children. Exchanging high-GI foods for low-GI alternatives within core and non-core foods may improve diet quality of Australian children and adolescents.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary glycaemic index and glycaemic load among Australian children and adolescents: results from the 2011–2012 Australian Health Survey
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary glycaemic index and glycaemic load among Australian children and adolescents: results from the 2011–2012 Australian Health Survey
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary glycaemic index and glycaemic load among Australian children and adolescents: results from the 2011–2012 Australian Health Survey
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr J. C. Y. Louie, fax +852 2559 9114, email jimmyl@hku.hk

References

Hide All
1. Feliciano Pereira, P, das Gracas de Almeida, C & Alfenas Rde, C (2014) Glycemic index role on visceral obesity, subclinical inflammation and associated chronic diseases. Nutr Hosp 30, 237243.
2. Ludwig, DS (2002) The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287, 24142423.
3. Scribner, KB, Pawlak, DB, Aubin, CM, et al. (2008) Long-term effects of dietary glycemic index on adiposity, energy metabolism, and physical activity in mice. Am J Physiol Endocrinol Metab 295, E1126E1131.
4. Barclay, AW, Petocz, P, McMillan-Price, J, et al. (2008) Glycemic index, glycemic load, and chronic disease risk – a meta-analysis of observational studies. Am J Clin Nutr 87, 627637.
5. Greenwood, DC, Threapleton, DE, Evans, CE, et al. (2013) Glycemic index, glycemic load, carbohydrates, and type 2 diabetes: systematic review and dose-response meta-analysis of prospective studies. Diabetes Care 36, 41664171.
6. McMillan-Price, J & Brand-Miller, J (2006) Low-glycaemic index diets and body weight regulation. Int J Obes 30, S40S46.
7. National Health and Medical Research Council (Australia) (2013) Australian Dietary Guidelines. Canberra: NHMRC.
8. Health Canada (2011) Eating Well with Canada’s Food Guide – A Resource for Educators and Communicators. Ottawa: Health Canada.
9. Food Standards Agency (2007) FSA nutrient and food based guidelines for UK institutions, Food Standards Agency, London.
10. U.S. Department of Agriculture & U.S. Department of Health & Human Services (2015) Scientific report of the 2015 Dietary Guidelines Advisory Committee – advisory report to the Secretary of Health and Human Services and the Secretary of Agriculture. Washington, DC: USDA.
11. Brand-Miller, JC, Holt, SH, Pawlak, DB, et al. (2002) Glycemic index and obesity. Am J Clin Nutr 76, 281S285S.
12. Ludwig, DS (2000) Dietary glycemic index and obesity. J Nutr 130, 280.
13. Hermansen, M-LF, Eriksen, NMB, Mortensen, LS, et al. (2006) Can the glycemic index (GI) be used as a tool in the prevention and management of type 2 diabetes? Rev Diabet Stud 3, 6171.
14. Louie, JC, Brand-Miller, JC, Markovic, TP, et al. (2010) Glycemic index and pregnancy: a systematic literature review. J Nutr Metab 2010, 282464.
15. Louie, JC, Brand-Miller, JC & Moses, RG (2013) Carbohydrates, glycemic index, and pregnancy outcomes in gestational diabetes. Curr Diab Rep 13, 611.
16. Gnagnarella, P, Gandini, S, La Vecchia, C, et al. (2008) Glycemic index, glycemic load, and cancer risk: a meta-analysis. Am J Clin Nutr 87, 17931801.
17. Barba, G, Sieri, S, Russo, MD, et al. (2012) Glycaemic index and body fat distribution in children: the results of the ARCA project. Nutr Metab Cardiovasc Dis 22, 2834.
18. Murakami, K, Miyake, Y, Sasaki, S, et al. (2011) Dietary glycemic index and glycemic load in relation to risk of overweight in Japanese children and adolescents: the Ryukyus Child Health Study. Int J Obes (Lond) 35, 925936.
19. Goletzke, J, Herder, C, Joslowski, G, et al. (2013) Habitually higher dietary glycemic index during puberty is prospectively related to increased risk markers of type 2 diabetes in younger adulthood. Diabetes Care 36, 18701876.
20. Louie, JC, Buyken, AE, Heyer, K, et al. (2011) Dietary glycaemic index and glycaemic load among Australian children and adolescents. Br J Nutr 106, 12731282.
21. Brand-Miller, JC, Foster-Powell, K & Atkinson, FS (2014) Professor Jennie Brand-Miller’s Low GI Diet Shopper’s Guide 2015. Sydney: Hachette Australia.
22. Atkinson, FS, Foster-Powell, K & Brand-Miller, JC (2008) International tables of glycemic index and glycemic load values: 2008. Diabetes Care 31, 22812283.
23. Australian Bureau of Statistics (2012) Australian Health Survey 2011–2012. http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4364.0.55.001main+features12011-12 (accessed May 2015).
24. Australian Bureau of Statistics (2013) Australian Health Survey: Users’ Guide, 2011–13. http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/74D87E30B3539C53CA257BBB0014BB36?opendocument (accessed June 2015).
25. Cole, TJ & Lobstein, T (2012) Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes 7, 284294.
26. Food Standards Australia New Zealand (2014) AUSNUT 2011-2013 – food composition database. http://www.foodstandards.gov.au/science/monitoringnutrients/ausnut/pages/default.aspx (accessed May 2015).
27. Louie, JCY, Flood, VM, Atkinson, FS, et al. (2015) Methodology for assigning appropriate glycaemic index values to an Australian food composition database. J Food Compos Anal 38, 16.
28. Louie, JCY, Barclay, AW & Brand-Miller, JC (2015) Assigning glycaemic index values to foods in a recent Australian food composition database. Eur J Clin Nutr 70, 280281.
29. Chen, YJ, Sun, FH, Wong, SH, et al. (2010) Glycemic index and glycemic load of selected Chinese traditional foods. World J Gastroenterol 16, 15121517.
30. Sydney University Glycemic Index Research Service (2012) GlycemicIndex.com. http://www.glycemicindex.com (accessed April–June 2012).
31. Food Standards Australia New Zealand (2015) AUSNUT 2011–13 food and dietary supplement classification system. http://www.foodstandards.gov.au/science/monitoringnutrients/ausnut/ausnutdatafiles/Pages/foodclassification.aspx (accessed June 2015).
32. Wolever, TM, Jenkins, DJ, Jenkins, AL, et al. (1991) The glycemic index: methodology and clinical implications. Am J Clin Nutr 54, 846854.
33. Poslusna, K, Ruprich, J, de Vries, JHM, et al. (2009) Misreporting of energy and micronutrient intake estimated by food records and 24 hour recalls, control and adjustment methods in practice. Br J Nutr 101, S73S85.
34. Goldberg, GR, Black, AE, Jebb, SA, et al. (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45, 569581.
35. Data Analysis Australia (2012) Sampling and weighting – a better practice guide for practitioners. http://www.daa.com.au/analytical-ideas/sampling-and-weighting/ (accessed June 2015).
36. Streiner, DL (2015) Best (but oft-forgotten) practices: the multiple problems of multiplicity – whether and how to correct for many statistical tests. Am J Clin Nutr 102, 721728.
37. O’Sullivan, TA, Lyons-Wall, P, Bremner, AP, et al. (2010) Dietary glycaemic carbohydrate in relation to the metabolic syndrome in adolescents: comparison of different metabolic syndrome definitions. Diabetic Med 27, 770778.
38. Murakami, K, McCaffrey, TA, Gallagher, AM, et al. (2014) Dietary glycemic index and glycemic load in relation to changes in body composition measures during adolescence: Northern Ireland Young Hearts Study. Int J Obes (Lond) 38, 252258.
39. Joslowski, G, Goletzke, J, Cheng, G, et al. (2012) Prospective associations of dietary insulin demand, glycemic index, and glycemic load during puberty with body composition in young adulthood. Int J Obes (Lond) 36, 14631471.
40. Joslowski, G, Halim, J, Goletzke, J, et al. (2015) Dietary glycemic load, insulin load, and weight loss in obese, insulin resistant adolescents: RESIST study. Clin Nutr 34, 8994.
41. Gopinath, B, Flood, VM, Rochtchina, E, et al. (2012) Influence of high glycemic index and glycemic load diets on blood pressure during adolescence. Hypertension 59, 12721277.
42. Murakami, K, McCaffrey, TA & Livingstone, MB (2013) Dietary glycaemic index and glycaemic load in relation to food and nutrient intake and indices of body fatness in British children and adolescents. Br J Nutr 110, 15121523.
43. Murakami, K, Sasaki, S, Takahashi, Y, et al. (2008) Reproducibility and relative validity of dietary glycaemic index and load assessed with a self-administered diet-history questionnaire in Japanese adults. Br J Nutr 99, 639648.
44. Murakami, K, Sasaki, S, Takahashi, Y, et al. (2006) Dietary glycemic index and load in relation to metabolic risk factors in Japanese female farmers with traditional dietary habits. Am J Clin Nutr 83, 11611169.
45. Hui, LL & Nelson, EAS (2006) Meal glycaemic load of normal-weight and overweight Hong Kong children. Eur J Clin Nutr 60, 220227.
46. Buyken, AE, Dettmann, W, Kersting, M, et al. (2005) Glycaemic index and glycaemic load in the diet of healthy schoolchildren: trends from 1990 to 2002, contribution of different carbohydrate sources and relationships to dietary quality. Br J Nutr 94, 796803.
47. Brand-Miller, JC (2009) Glycaemic index and glycaemic load: crunch time? Nutr Diet 66, 136137.
48. Salmeron, J, Ascherio, A & Rimm, E (1997) Dietary fiber, glycaemic load, and risk of NIDDM in men. Diabetes Care 20, 545550.
49. Salmeron, J, Manson, J, Stampfer, M, et al. (1997) Dietary fiber, glycaemic load, and risk of non-insulin dependent diabetes mellitus in women. JAMA 277, 472477.
50. Goletzke, J, Buyken, AE, Louie, JC, et al. (2015) Dietary micronutrient intake during pregnancy is a function of carbohydrate quality. Am J Clin Nutr 102, 626632.
51. Louie, JCY, Buyken, AE, Brand-Miller, JC, et al. (2012) The link between dietary glycemic index and nutrient adequacy. Am J Clin Nutr 95, 694702.
52. Franz, MJ (2003) The glycemic index: not the most effective nutrition therapy intervention. Diabetes Care 26, 24662468.
53. Pi-Sunyer, FX (2002) Glycemic index and disease. Am J Clin Nutr 76, 290S298S.
54. Pi-Sunyer, X (2005) Do glycemic index, glycemic load, and fiber play a role in insulin sensitivity, disposition index, and type 2 diabetes? Diabetes Care 28, 29782979.
55. Livingstone, MB & Robson, PJ (2000) Measurement of dietary intake in children. Proc Nutr Soc 59, 279293.
56. Klesges, RC, Klesges, LM, Brown, G, et al. (1987) Validation of the 24-hour dietary recall in preschool children. J Am Diet Assoc 87, 13831385.
57. Basch, CE, Shea, S, Arliss, R, et al. (1990) Validation of mothers’ reports of dietary intake by four to seven year-old children. Am J Public Health 80, 13141317.
58. Rangan, A, Allman-Farinelli, M, Donohoe, E, et al. (2014) Misreporting of energy intake in the 2007 Australian children’s survey: differences in the reporting of food types between plausible, under- and over-reporters of energy intake. J Hum Nutr Diet 27, 450458.
59. Biro, G, Hulshof, K, Ovesen, L, et al. (2002) Selection of methodology to assess food intake. Eur J Clin Nutr 56, S25S32.
60. Tooze, JA, Kipnis, V, Buckman, DW, et al. (2010) A mixed-effects model approach for estimating the distribution of usual intake of nutrients: the NCI method. Stat Med 29, 28572868.
61. Harttig, U, Haubrock, J, Knuppel, S, et al. (2011) The MSM program: web-based statistics package for estimating usual dietary intake using the multiple source method. Eur J Clin Nutr 65, Suppl. 1, S87S91.
62. Dekkers, AL, Verkaik-Kloosterman, J, van Rossum, CT, et al. (2014) SPADE, a new statistical program to estimate habitual dietary intake from multiple food sources and dietary supplements. J Nutr 144, 20832091.
63. National Cancer Institute (2015) Dietary assessment primer. Summary tables: recommendations on potential approaches to dietary assessment for different research objectives requiring group-level estimates. http://dietassessmentprimer.cancer.gov/approach/table.html (accessed May 2015).
64. Yanek, LR, Moy, TF, RaqueÑO, JV, et al. (2000) Comparison of the effectiveness of a telephone 24-hour dietary recall method vs an in-person method among urban African-American women. J Am Diet Assoc 100, 11721177.
65. Trout, DL, Behall, KM & Osilesi, O (1993) Prediction of glycemic index for starchy foods. Am J Clin Nutr 58, 873878.

Keywords

Type Description Title
WORD
Supplementary materials

Jones supplemtary material
Supplementary Table

 Word (36 KB)
36 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: