Skip to main content Accessibility help

A diet high in sugar-sweetened beverage and low in fruits and vegetables is associated with adiposity and a pro-inflammatory adipokine profile

  • Corinna Koebnick (a1), Mary Helen Black (a1), Jun Wu (a1), Yu-Hsiang Shu (a1), Adrienne W. MacKay (a2), Richard M. Watanabe (a2) (a3) (a4), Thomas A. Buchanan (a3) (a5) and Anny H. Xiang (a1)...


Diet, obesity and adipokines play important roles in diabetes and CVD; yet, limited studies have assessed the relationship between diet and multiple adipokines. This cross-sectional study assessed associations between diet, adiposity and adipokines in Mexican Americans. The cohort included 1128 participants (age 34·7±8·2 years, BMI 29·5±5·9 kg/m2, 73·2 % female). Dietary intake was assessed by 12-month food frequency questionnaire. Adiposity was measured by BMI, total percentage body fat and percentage trunk fat using dual-energy X-ray absorptiometry. Adiponectin, apelin, C-reactive protein (CRP), dipeptidyl peptidase-4 (DPP-IV), IL-1β, IL-1ra, IL-6, IL-18, leptin, lipocalin, monocyte chemo-attractant protein-1 (MCP-1), resistin, secreted frizzled protein 4 (SFRP-4), SFRP-5, TNF-α and visfatin were assayed with multiplex kits or ELISA. Joint multivariate associations between diet, adiposity and adipokines were analysed using canonical correlations adjusted for age, sex, energy intake and kinship. The median (interquartile range) energy intake was 9514 (7314, 11912) kJ/d. Overall, 55 % of total intake was accounted for by carbohydrates (24 % from sugar). A total of 66 % of the shared variation between diet and adiposity, and 34 % of diet and adipokines were explained by the top canonical correlation. The diet component was most represented by sugar-sweetened beverages (SSB), fruit and vegetables. Participants consuming a diet high in SSB and low in fruits and vegetables had higher adiposity, CRP, leptin, and MCP-1, but lower SFRP-5 than participants with high fruit and vegetable and low SSB intake. In Mexican Americans, diets high in SSB but low in fruits and vegetables contribute to adiposity and a pro-inflammatory adipokine profile.


Corresponding author

*Corresponding author: C. Koebnick, email


Hide All
1. Hruby, A, Manson, JE, Qi, L, et al. (2016) Determinants and consequences of obesity. Am J Public Health 106, 16561662.
2. Pemberton, VL, McCrindle, BW, Barkin, S, et al. (2010) Report of the National Heart, Lung, and Blood Institute’s Working Group on obesity and other cardiovascular risk factors in congenital heart disease. Circulation 121, 11531159.
3. Rocha, VZ & Libby, P (2009) Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol 6, 399409.
4. Abranches, MV, Oliveira, FC, Conceicao, LL, et al. (2015) Obesity and diabetes: the link between adipose tissue dysfunction and glucose homeostasis. Nutr Res Rev 28, 121132.
5. Jung, UJ & Choi, MS (2014) Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 15, 61846223.
6. Ko, BJ, Park, KH & Mantzoros, CS (2014) Diet patterns, adipokines, and metabolism: where are we and what is next? Metabolism 63, 168177.
7. Sanchez, D, Miguel, M & Aleixandre, A (2012) Dietary fiber, gut peptides, and adipocytokines. J Med Food 15, 223230.
8. Silva, FM, de Almeida, JC & Feoli, AM (2011) Effect of diet on adiponectin levels in blood. Nutr Rev 69, 599612.
9. Feakins, RM (2016) Obesity and metabolic syndrome: pathological effects on the gastrointestinal tract. Histopathology 68, 630640.
10. Saltevo, J, Vanhala, M, Kautiainen, H, et al. (2008) Gender differences in C-reactive protein, interleukin-1 receptor antagonist and adiponectin levels in the metabolic syndrome: a population-based study. Diabet Med 25, 747750.
11. DeMarco, VG, Aroor, AR & Sowers, JR (2014) The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol 10, 364376.
12. El Husseny, MW, Mamdouh, M, Shaban, S, et al. (2017) Adipokines: potential therapeutic targets for vascular dysfunction in type ii diabetes mellitus and obesity. J Diabetes Res 2017, 8095926.
13. Matsuzawa, Y (2006) Therapy Insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nat Clin Pract Cardiovasc Med 3, 3542.
14. Shibata, R, Ouchi, N, Ohashi, K, et al. (2017) The role of adipokines in cardiovascular disease. J Cardiol 70, 329334.
15. Kwon, H & Pessin, JE (2013) Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Lausanne) 4, 71.
16. Antuna-Puente, B, Feve, B, Fellahi, S, et al. (2008) Adipokines: the missing link between insulin resistance and obesity. Diabet Metab 34, 211.
17. Dunmore, SJ & Brown, JE (2013) The role of adipokines in beta-cell failure of type 2 diabetes. J Endocrinol 216, T37T45.
18. Xiang, AH, Kawakubo, M, Trigo, E, et al. (2010) Declining beta-cell compensation for insulin resistance in Hispanic women with recent gestational diabetes mellitus: association with changes in weight, adiponectin, and C-reactive protein. Diabet Care 33, 396401.
19. Schwingshackl, L & Hoffmann, G (2014) Mediterranean dietary pattern, inflammation and endothelial function: a systematic review and meta-analysis of intervention trials. Nutr Metab Cardiovasc Dis 24, 929939.
20. Eichelmann, F, Schwingshackl, L, Fedirko, V, et al. (2016) Effect of plant-based diets on obesity-related inflammatory profiles: a systematic review and meta-analysis of intervention trials. Obes Rev 17, 10671079.
21. Neale, EP, Batterham, MJ & Tapsell, LC (2016) Consumption of a healthy dietary pattern results in significant reductions in C-reactive protein levels in adults: a meta-analysis. Nutr Res 36, 391401.
22. Shivappa, N, Steck, SE, Hurley, TG, et al. (2014) Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr 17, 16891696.
23. Tabung, FK, Smith-Warner, SA, Chavarro, JE, et al. (2016) Development and validation of an empirical dietary inflammatory index. J Nutr 146, 15601570.
24. Watanabe, RM, Allayee, H, Xiang, AH, et al. (2007) Transcription factor 7-like 2 (TCF7L2) is associated with gestational diabetes mellitus and interacts with adiposity to alter insulin secretion in Mexican Americans. Diabetes 56, 14811485.
25. Black, MH, Fingerlin, TE, Allayee, H, et al. (2008) Evidence of interaction between PPARG2 and HNF4A contributing to variation in insulin sensitivity in Mexican Americans. Diabetes 57, 10481056.
26. Li, X, Allayee, H, Xiang, AH, et al. (2009) Variation in IGF2BP2 interacts with adiposity to alter insulin sensitivity in Mexican Americans. Obesity (Silver Spring) 17, 729736.
27. Shu, YH, Hartiala, J, Xiang, AH, et al. (2009) Evidence for sex-specific associations between variation in acid phosphatase locus 1 (ACP1) and insulin sensitivity in Mexican-Americans. J Clin Endocrinol Metab 94, 40944102.
28. Buchanan, TA, Xiang, AH, Kjos, SL, et al. (1999) Antepartum predictors of the development of type 2 diabetes in Latino women 11–26 months after pregnancies complicated by gestational diabetes. Diabetes 48, 24302436.
29. Black, MH, Watanabe, RM, Trigo, E, et al. (2013) High-fat diet is associated with obesity-mediated insulin resistance and beta-cell dysfunction in Mexican Americans. J Nutr 143, 479485.
30. Willett, WC, Sampson, L, Stampfer, MJ, et al. (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122, 5165.
31. Croghan, CW & Egeghy, PP (2003) Methods of dealing with values below the limit of detection using SAS. (accessed April 2017).
32. Knapp, TR (1978) Canonical correlation analysis: a general parametric significance-testing system. Psychol Bull 85, 410416.
33. Hotelling, H (1936) Relations between two sets of variates. Biometrika 28, 321377.
34. Therneau, TM (2015) coxme: Mixed Effects Cox Models. R package version 2.2-5 2015. (accessed May 2017).
35. Degani, A & Shafto, M (2006) Canonical correlation analysis: use of composite heliographs for representing multiple patterns. Diagrams 2006 – Diagrammatic Representation and Inference – 4th International Conference, Stanford, CA.
36. R Development Core Team (2016) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
37. Despres, JP & Lemieux, I (2006) Abdominal obesity and metabolic syndrome. Nature 444, 881887.
38. Schwartz, MW, Seeley, RJ, Zeltser, LM, et al. (2017) Obesity pathogenesis: an endocrine society scientific statement. Endocr Rev 38, 130.
39. Rees, K, Hartley, L, Flowers, N, et al. (2013) ‘Mediterranean’ dietary pattern for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev, issue 8, CD009825.
40. Satija, A, Bhupathiraju, SN, Rimm, EB, et al. (2016) Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies. PLoS Med 13, e1002039.
41. Shen, J, Wilmot, KA, Ghasemzadeh, N, et al. (2015) Mediterranean dietary patterns and cardiovascular health. Annu Rev Nutr 35, 425449.
42. Obarzanek, E, Sacks, FM, Vollmer, WM, et al. (2001) Effects on blood lipids of a blood pressure-lowering diet: The Dietary Approaches to Stop Hypertension (DASH) Trial. Am J Clin Nutr 74, 8089.
43. Soltani, S, Shirani, F, Chitsazi, MJ, et al. (2016) The effect of Dietary Approaches to Stop Hypertension (DASH) diet on weight and body composition in adults: a systematic review and meta-analysis of randomized controlled clinical trials. Obes Rev 17, 442454.
44. Ogden, CL, Kit, BK, Carroll, MD, et al. (2011) Consumption of sugar drinks in the United States, 2005–2008. NCHS Data Brief 71, 18.
45. Yngve, A, Haapala, I, Hodge, A, et al. (2012) Making soft drinks the dietary version of the cigarette. Public Health Nutr 15, 13291330.
46. Malik, VS, Pan, A, Willett, WC, et al. (2013) Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis. Am J Clin Nutr 98, 10841102.
47. Malik, VS, Willett, WC & Hu, FB (2009) Sugar-sweetened beverages and BMI in children and adolescents: reanalyses of a meta-analysis. Am J Clin Nutr 89, 438439; author reply 9–40.
48. Malik, VS, Popkin, BM, Bray, GA, et al. (2010) Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabet Care 33, 24772483.
49. Stanhope, KL (2016) Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit Rev Clin Lab Sci 53, 5267.
50. Newby, PK, Muller, D, Hallfrisch, J, et al. (2003) Dietary patterns and changes in body mass index and waist circumference in adults. Am J Clin Nutr 77, 14171425.
51. He, K, Hu, FB, Colditz, GA, et al. (2004) Changes in intake of fruits and vegetables in relation to risk of obesity and weight gain among middle-aged women. Int J Obes Relat Metab Disord 28, 15691574.
52. Bell, EA, Castellanos, VH, Pelkman, CL, et al. (1998) Energy density of foods affects energy intake in normal-weight women. Am J Clin Nutr 67, 412420.
53. Pereira, MA & Ludwig, DS (2001) Dietary fiber and body-weight regulation. Observations and mechanisms. Pediatr Clin North Am 48, 969980.
54. Rangel-Huerta, OD, Aguilera, CM, Martin, MV, et al. (2015) Normal or high polyphenol concentration in orange juice affects antioxidant activity, blood pressure, and body weight in obese or overweight adults. J Nutr 145, 18081816.
55. Deshmane, SL, Kremlev, S, Amini, S, et al. (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29, 313326.
56. Ouchi, N, Higuchi, A, Ohashi, K, et al. (2010) Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science 329, 454457.
57. Chen, K, Li, F, Li, J, et al. (2006) Induction of leptin resistance through direct interaction of C-reactive protein with leptin. Nat Med 12, 425432.
58. Saltevo, J, Vanhala, M, Kautiainen, H, et al. (2007) Levels of adiponectin, C-reactive protein and interleukin-1 receptor antagonist are associated with the relative change in body mass index between childhood and adulthood. Diab Vasc Dis Res 4, 328331.
59. Yeh, ET & Willerson, JT (2003) Coming of age of C-reactive protein: using inflammation markers in cardiology. Circulation 107, 370371.
60. Freitas Lima, LC, Braga, VA, do Socorro de Franca Silva, M, et al. (2015) Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol 6, 304.
61. Abella, V, Scotece, M, Conde, J, et al. (2017) Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol 13, 100109.
62. Koh, KK, Park, SM & Quon, MJ (2008) Leptin and cardiovascular disease: response to therapeutic interventions. Circulation 117, 32383249.
63. Bhupathiraju, SN & Tucker, KL (2011) Greater variety in fruit and vegetable intake is associated with lower inflammation in Puerto Rican adults. Am J Clin Nutr 93, 3746.
64. Fisk, PS 2nd, Middaugh, AL, Rhee, YS, et al. (2011) Few favorable associations between fruit and vegetable intake and biomarkers for chronic disease risk in American adults. Nutr Res 31, 616624.
65. Esmaillzadeh, A, Kimiagar, M, Mehrabi, Y, et al. (2006) Fruit and vegetable intakes, C-reactive protein, and the metabolic syndrome. Am J Clin Nutr 84, 14891497.
66. Gao, X, Bermudez, OI & Tucker, KL (2004) Plasma C-reactive protein and homocysteine concentrations are related to frequent fruit and vegetable intake in Hispanic and non-Hispanic white elders. J Nutr 134, 913918.
67. Watzl, B, Kulling, SE, Moseneder, J, et al. (2005) A 4-wk intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, nonsmoking men. Am J Clin Nutr 82, 10521058.
68. Navarro, P, de Dios, O, Jois, A, et al. (2017) Vegetable and fruit intakes are associated with hs-CRP levels in pre-pubertal girls. Nutrients 9, E224.
69. Mahoney, SE & Loprinzi, PD (2014) Influence of flavonoid-rich fruit and vegetable intake on diabetic retinopathy and diabetes-related biomarkers. J Diabet Complications 28, 767771.
70. AlEssa, HB, Ley, SH, Rosner, B, et al. (2016) High fiber and low starch intakes are associated with circulating intermediate biomarkers of type 2 diabetes among women. J Nutr 146, 306317.
71. McCall, DO, McGartland, CP, McKinley, MC, et al. (2011) The effect of increased dietary fruit and vegetable consumption on endothelial activation, inflammation and oxidative stress in hypertensive volunteers. Nutr Metab Cardiovasc Dis 21, 658664.
72. McEvoy, CT, Wallace, IR, Hamill, LL, et al. (2015) Increasing fruit and vegetable intake has no dose-response effect on conventional cardiovascular risk factors in overweight adults at high risk of developing cardiovascular disease. J Nutr 145, 14641471.
73. Nadeem, N, Woodside, JV, Neville, CE, et al. (2014) Serum amyloid A-related inflammation is lowered by increased fruit and vegetable intake, while high-sensitive C-reactive protein, IL-6 and E-selectin remain unresponsive. Br J Nutr 112, 11291136.
74. Williams, EJ, Baines, KJ, Berthon, BS, et al. (2017) Effects of an encapsulated fruit and vegetable juice concentrate on obesity-induced systemic inflammation: a randomised controlled trial. Nutrients 9, E116.
75. Heinonen, MV, Laaksonen, DE, Karhu, T, et al. (2009) Effect of diet-induced weight loss on plasma apelin and cytokine levels in individuals with the metabolic syndrome. Nutr Metab Cardiovasc Dis 19, 626633.
76. Kanda, H, Tateya, S, Tamori, Y, et al. (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116, 14941505.
77. Rui, L (2014) Energy metabolism in the liver. Compr Physiol 4, 177197.
78. Kim, CS, Park, HS, Kawada, T, et al. (2006) Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes (Lond) 30, 13471355.
79. Sartipy, P & Loskutoff, DJ (2003) Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A 100, 72657270.
80. Li, YF, Chang, YY, Huang, HC, et al. (2015) Tomato juice supplementation in young women reduces inflammatory adipokine levels independently of body fat reduction. Nutrition 31, 691696.
81. Cranford, TL, Enos, RT, Velazquez, KT, et al. (2016) Role of MCP-1 on inflammatory processes and metabolic dysfunction following high-fat feedings in the FVB/N strain. Int J Obes (Lond) 40, 844851.
82. Lin, Y, Ye, S, He, Y, et al. (2018) Short-term insulin intensive therapy decreases MCP-1 and NF-kappa B expression of peripheral blood monocyte and the serum MCP-1 concentration in newly diagnosed type 2 diabetics. Arch Endocrinol Metab 62, 212220.
83. Black, MH, Shu, YH, Wu, J, et al. (2018) Longitudinal increases in adiposity contribute to worsening adipokine profile over time in Mexican Americans. Obesity (Silver Spring) 26, 703712.
84. Helfer, G & Tups, A (2016) Hypothalamic Wnt signalling and its role in energy balance regulation. J Neuroendocrinol 28, 12368.
85. Chen, L, Zhao, X, Liang, G, et al. (2017) Recombinant SFRP5 protein significantly alleviated intrahepatic inflammation of nonalcoholic steatohepatitis. Nutr Metab (Lond) 14, 56.
86. Herder, C, Carstensen, M & Ouwens, DM (2013) Anti-inflammatory cytokines and risk of type 2 diabetes. Diabetes Obes Metab 15, Suppl. 3, 3950.
87. Schulte, DM, Muller, N, Neumann, K, et al. (2012) Pro-inflammatory wnt5a and anti-inflammatory sFRP5 are differentially regulated by nutritional factors in obese human subjects. PLOS ONE 7, e32437.
88. Tan, X, Wang, X, Chu, H, et al. (2014) SFRP5 correlates with obesity and metabolic syndrome and increases after weight loss in children. Clin Endocrinol (Oxf) 81, 363369.
89. Fantuzzi, G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115, 911919; quiz 20.
90. Wang, X, Bao, W, Liu, J, et al. (2013) Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabet Care 36, 166175.
91. Salvini, S, Hunter, DJ, Sampson, L, et al. (1989) Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. Int J Epidemiol 18, 858867.


Type Description Title
Supplementary materials

Koebnick et al. supplementary material
Figure S1

 Unknown (6.5 MB)
6.5 MB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed