Skip to main content Accessibility help
×
Home

Crosstalk between endoplasmic reticulum stress and oxidative stress in apoptosis induced by α-tocopheryl succinate in human gastric carcinoma cells

  • Xiaoli Huang (a1) (a2), Li Li (a3), Linyou Zhang (a3), Zhihong Zhang (a1), Xiaolin Wang (a1), Xuguang Zhang (a1), Liying Hou (a1) and Kun Wu (a1)...

Abstract

α-Tocopheryl succinate (α-TOS) has been shown to be a potent apoptosis inducer and growth inhibitor in a variety of cancer cells. Our previous studies showed the important role of endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation in the apoptosis induced by α-TOS. However, the relationship of oxidative stress with ER stress is still controversial. The objective of the present study was to investigate the interplay between the two stress responses induced by α-TOS in SGC-7901 human gastric cancer cells. In response to α-TOS, cytological changes typical of apoptosis, induction of glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein (C/EBP) homologous protein transcription factor (CHOP), and activation of caspase-4 were observed. And the antioxidant N-acetyl-l-cysteine inhibited induction of both GRP78 and CHOP by α-TOS transcriptionally and translationally. Furthermore, knocking down CHOP by RNA interference decreased ROS generation, increased glutathione level and induced glutathione peroxidase mRNA expression in α-TOS-treated cells, whereas catalase and superoxide dismutases mRNA expression were not altered. The results imply that α-TOS induces ER stress response through ROS production, while CHOP perturbs the redox state of SGC-7901 cells treated with α-TOS.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Crosstalk between endoplasmic reticulum stress and oxidative stress in apoptosis induced by α-tocopheryl succinate in human gastric carcinoma cells
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Crosstalk between endoplasmic reticulum stress and oxidative stress in apoptosis induced by α-tocopheryl succinate in human gastric carcinoma cells
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Crosstalk between endoplasmic reticulum stress and oxidative stress in apoptosis induced by α-tocopheryl succinate in human gastric carcinoma cells
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: K. Wu, fax +86 451 8750 2885, E-mail: wukun_15000@126.com

References

Hide All
1Sun, SY, Hail, N Jr & Lotan, R (2004) Apoptosis as a novel target for cancer chemoprevention. J Natl Cancer Inst 96, 662672.
2Ghobrial, IM, Witzig, TE & Adjei, AA (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55, 178194.
3Lee, AS (2007) GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 67, 34963499.
4Oyadomari, S & Mori, M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11, 381389.
5Boyce, M & Yuan, J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13, 363373.
6Badiola, N, Penas, C, Minano-Molina, A, et al. (2011) Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12. Cell Death Dis 2, e149.
7Billia, F, Hauck, L, Konecny, F, et al. (2011) PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc Natl Acad Sci U S A 108, 95729577.
8Takano, K, Kitao, Y, Tabata, Y, et al. (2007) A dibenzoylmethane derivative protects dopaminergic neurons against both oxidative stress and endoplasmic reticulum stress. Am J Physiol Cell Physiol 293, C1884C1894.
9Tu, BP & Weissman, JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164, 341346.
10Lampiasi, N, Azzolina, A, D'Alessandro, N, et al. (2009) Antitumor effects of dehydroxymethylepoxyquinomicin, a novel nuclear factor-kappaB inhibitor, in human liver cancer cells are mediated through a reactive oxygen species-dependent mechanism. Mol Pharmacol 76, 290300.
11Guan, L, Han, B, Li, Z, et al. (2009) Sodium selenite induces apoptosis by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction in human acute promyelocytic leukemia NB4 cells. Apoptosis 14, 218225.
12Younce, CW & Kolattukudy, PE (2010) MCP-1 causes cardiomyoblast death via autophagy resulting from ER stress caused by oxidative stress generated by inducing a novel zinc-finger protein, MCPIP. Biochem J 426, 4353.
13Mooradian, AD & Haas, MJ (2011) Glucose-induced endoplasmic reticulum stress is independent of oxidative stress: a mechanistic explanation for the failure of antioxidant therapy in diabetes. Free Radic Biol Med 50, 11401143.
14Sheikh-Ali, M, Sultan, S, Alamir, AR, et al. (2010) Effects of antioxidants on glucose-induced oxidative stress and endoplasmic reticulum stress in endothelial cells. Diabetes Res Clin Pract 87, 161166.
15Yokouchi, M, Hiramatsu, N, Hayakawa, K, et al. (2008) Involvement of selective reactive oxygen species upstream of proapoptotic branches of unfolded protein response. J Biol Chem 283, 42524260.
16Neuzil, J, Tomasetti, M, Zhao, Y, et al. (2007) Vitamin E analogs, a novel group of “mitocans,” as anticancer agents: the importance of being redox-silent. Mol Pharmacol 71, 11851199.
17Tomasetti, M, Gellert, N, Procopio, A, et al. (2004) A vitamin E analogue suppresses malignant mesothelioma in a preclinical model: a future drug against a fatal neoplastic disease? Int J Cancer 109, 641642.
18Zhang, Y, Ni, J, Messing, EM, et al. (2002) Vitamin E succinate inhibits the function of androgen receptor and the expression of prostate-specific antigen in prostate cancer cells. Proc Natl Acad Sci U S A 99, 74087413.
19Neuzil, J, Weber, T, Schroder, A, et al. (2001) Induction of cancer cell apoptosis by alpha-tocopheryl succinate: molecular pathways and structural requirements. FASEB J 15, 403415.
20Dong, LF, Freeman, R, Liu, J, et al. (2009) Suppression of tumor growth in vivo by the mitocan alpha-tocopheryl succinate requires respiratory complex II. Clin Cancer Res 15, 15931600.
21Huang, X, Zhang, Z, Jia, L, et al. (2010) Endoplasmic reticulum stress contributes to vitamin E succinate-induced apoptosis in human gastric cancer SGC-7901 cells. Cancer Lett 296, 123131.
22Jia, L, Huang, XL, Zhao, Y, et al. (2010) Vitamin E succinate (VES) inhibits cell growth and induces apoptosis by mitochondrial-derived ROS in SGC-7901 cells. Med Sci Monit 16, BR131BR139.
23Patil, C & Walter, P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13, 349355.
24Wu, Y, Zhang, H, Dong, Y, et al. (2005) Endoplasmic reticulum stress signal mediators are targets of selenium action. Cancer Res 65, 90739079.
25Circu, ML & Aw, TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48, 749762.
26Tabas, I & Ron, D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13, 184190.
27Zhu, GY, Li, YW, Tse, AK, et al. (2011) 20(S)-Protopanaxadiol, a metabolite of ginsenosides, induced cell apoptosis through endoplasmic reticulum stress in human hepatocarcinoma HepG2 cells. Eur J Pharmacol 668, 8898.
28Selimovic, D, Ahmad, M, El-Khattouti, A, et al. (2011) Apoptosis related protein-2 triggers melanoma cell death by a mechanism including both endoplasmic reticulum stress and mitochondrial dysregulation. Carcinogenesis 32, 12681278.
29Schroder, M & Kaufman, RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74, 739789.
30Haynes, CM & Ron, D (2010) The mitochondrial UPR – protecting organelle protein homeostasis. J Cell Sci 123, 38493855.
31Rutkowski, DT & Hegde, RS (2010) Regulation of basal cellular physiology by the homeostatic unfolded protein response. J Cell Biol 189, 783794.
32Lai, E, Teodoro, T & Volchuk, A (2007) Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda) 22, 193201.
33Xu, C, Bailly-Maitre, B & Reed, JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115, 26562664.
34Kim, R, Emi, M, Tanabe, K, et al. (2006) Role of the unfolded protein response in cell death. Apoptosis 11, 513.
35Chiang, CK, Hsu, SP, Wu, CT, et al. (2011) Endoplasmic reticulum stress implicated in the development of renal fibrosis. Mol Med 17, 12951305.
36Pelletier, N, Casamayor-Palleja, M, De Luca, K, et al. (2006) The endoplasmic reticulum is a key component of the plasma cell death pathway. J Immunol 176, 13401347.
37Hitomi, J, Katayama, T, Eguchi, Y, et al. (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 165, 347356.
38Oka, S & Nakabeppu, Y (2011) DNA glycosylase encoded by MUTYH functions as a molecular switch for programmed cell death under oxidative stress to suppress tumorigenesis. Cancer Sci 102, 677682.
39Acharya, A, Das, I, Chandhok, D, et al. (2010) Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid Med Cell Longev 3, 2334.
40Bouayed, J & Bohn, T (2010) Exogenous antioxidants – double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev 3, 228237.
41Zhang, CL, Zeng, T, Zhao, XL, et al. (2012) Protective effects of garlic oil on hepatocarcinoma induced by N-nitrosodiethylamine in rats. Int J Biol Sci 8, 363374.
42Dong, LF, Low, P, Dyason, JC, et al. (2008) Alpha-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27, 43244335.
43Kadara, H, Lacroix, L, Lotan, D, et al. (2007) Induction of endoplasmic reticulum stress by the pro-apoptotic retinoid N-(4-hydroxyphenyl)retinamide via a reactive oxygen species-dependent mechanism in human head and neck cancer cells. Cancer Biol Ther 6, 705711.
44Lee, YJ, Suh, HN & Han, HJ (2009) Effect of BSA-induced ER stress on SGLT protein expression levels and alpha-MG uptake in renal proximal tubule cells. Am J Physiol Renal Physiol 296, F1405F1416.
45Xue, X, Piao, JH, Nakajima, A, et al. (2005) Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J Biol Chem 280, 3391733925.
46Hochman, A, Sternin, H, Gorodin, S, et al. (1998) Enhanced oxidative stress and altered antioxidants in brains of Bcl-2-deficient mice. J Neurochem 71, 741748.
47Harding, HP, Zhang, Y, Zeng, H, et al. (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11, 619633.
48Namba, T, Tanaka, K, Ito, Y, et al. (2009) Positive role of CCAAT/enhancer-binding protein homologous protein, a transcription factor involved in the endoplasmic reticulum stress response in the development of colitis. Am J Pathol 174, 17861798.
49Jang, JH & Surh, YJ (2003) Potentiation of cellular antioxidant capacity by Bcl-2: implications for its antiapoptotic function. Biochem Pharmacol 66, 13711379.
50McCullough, KD, Martindale, JL, Klotz, LO, et al. (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21, 12491259.
51Franco, R & Cidlowski, JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16, 13031314.

Keywords

Crosstalk between endoplasmic reticulum stress and oxidative stress in apoptosis induced by α-tocopheryl succinate in human gastric carcinoma cells

  • Xiaoli Huang (a1) (a2), Li Li (a3), Linyou Zhang (a3), Zhihong Zhang (a1), Xiaolin Wang (a1), Xuguang Zhang (a1), Liying Hou (a1) and Kun Wu (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed