References
1Park, HJ, Lee, JY, Chung, MY, et al. (2012) Green tea extract suppresses NFkB activation and inflammatory responses in diet-induced obese rats with nonalcoholic steatohepatitis. J Nutr 142, 57–63.
2Farrell, GC & Larter, CZ (2006) Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43, S99–S112.
3Assy, N, Nassar, F, Nasser, G, et al. (2009) Olive oil consumption and non-alcoholic fatty liver disease. World J Gastroenterol 15, 1809–1815.
4Park, S, Choi, Y, Um, SJ, et al. (2011) Oleuropein attenuates hepatic steatosis induced by high-fat diet in mice. J Hepatol 54, 984–993.
5Murat Bilgin, H, Atmaca, M, Deniz Obay, B, et al. (2011) Protective effects of coumarin and coumarin derivatives against carbon tetrachloride-induced acute hepatotoxicity in rats. Exp Toxicol Pathol 63, 325–330.
6Atmaca, M, Bilgin, HM, Obay, BD, et al. (2011) The hepatoprotective effect of coumarin and coumarin derivates on carbon tetrachloride-induced hepatic injury by antioxidative activities in rats. J Physiol Biochem 67, 569–576.
7Hsu, CL & Yen, GC (2007) Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocyte. J Agric Food Chem 55, 8404–8410.
8Yuce, B, Danis, O, Ogan, A, et al. (2009) Antioxidative and lipid lowering effects of 7,8-dihydroxy-3-(4-methylphenyl) coumarin in hyperlipidemic rats. Arzneimittelforschung 59, 129–134.
9Madhavan, GR, Balraju, V & Mallesham, B (2003) Novel coumarin derivatives of heterocyclic compounds as lipid-lowering agents. Bioorg Med Chem Lett 13, 2547–2551.
10Hsu, CL, Wu, CH, Huang, SL, et al. (2009) Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat diet in rats. J Agric Food Chem 57, 425–431.
11Cho, SJ, Jung, UJ & Choi, MS (2012) Differential effects of low-dose resveratrol an adiposity and hepatic steatosis in diet-induced obese mice. Br J Nutr 108, 2166–2175.
12Samuel, VT, Liu, ZX, Qu, X, et al. (2004) Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279, 32345–32353.
13Oosterveer, MH, Van Dijk, TH & Tietge, UJF (2009) High fat feeding induces hepatic fatty acid elongation in mice. PLoS One 4, e6066.
14Pari, L & Rajarajeswari, N (2009) Efficacy of coumarin on hepatic key enzymes of glucose metabolism in chemical induced type 2 diabetic rats. Chem Biol Interact 181, 292–296.
15Ogawa, H, Sasai, N, Kamisako, T, et al. (2007) Effects of osthol on blood pressure and lipid metabolism in stroke-prone spontaneously hypertensive rats. J Ethnopharmacol 112, 26–31.
16Folch, H, Lees, M & Sloane Stanley, GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497–509.
17Ohkawa, H, Ohishi, N & Yagi, K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95, 351–358.
18Ochoa, S (1955) Malic dehydrogenase from pig heart. In Methods in Enzymology, vol. 2, pp. 735–739 [Colowick, SP and Kaplan, NO, editors]. New York, NY: Academic Press.
19Gibson, DM & Hubbard, DD (1960) Incorporation of malonyl CoA into fatty acids by liver in starvation and alloxan-diabetes. Biochem Biophys Res Commun 3, 531–535.
20Lowry, OH, Rosebrough, NJ, Farr, AL, et al. (1993) Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265–275.
21Fried, SK, Ricci, MR, Russell, CD, et al. (2000) Regulation of leptin production in humans. J Nutr 27, 79–82.
22Min, HK, Kapoor, A, Fuchs, M, et al. (2012) Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab 15, 665–674.
23Chatrath, H, Vuppalanchi, R & Chalasani, N (2012) Dyslipidemia in patients with nonalcoholic fatty liver disease. Semin Liver Dis 32, 22–29.
24Araya, J, Rodrigo, R, Videla, LA, et al. (2004) Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin Sci (Lond) 106, 635–643.
25Li, J, Huang, J, Li, JS, et al. (2012) Accumulation of endoplasmic reticulum stress and lipogenesis in the liver through generational effects of high fat diets. J Hepatol 56, 900–907.
26Mong, MC, Chao, CY & Yin, MC (2011) Histidine and carnosine alleviated hepatic steatosis in mice consumed high saturated fat diet. Eur J Pharmacol 653, 82–88.
27Tessari, P, Coracina, A, Cosma, A, et al. (2009) Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 19, 291–302.
28Yu, S, Matsusue, K, Kashireddy, P, et al. (2003) Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overexpression. J Biol Chem 278, 498–505.
29Inoue, M, Ohtake, T, Motomura, W, et al. (2005) Increased expression of PPARgamma in high fat diet-induced liver steatosis in mice. Biochem Biophys Res Commun 336, 215–222.
30Matsusue, K, Gavrilova, O, Lambert, G, et al. (2004) Hepatic CCAAT/enhancer binding protein alpha mediates induction of lipogenesis and regulation of glucose homeostasis in leptin-deficient mice. Mol Endocrinol 18, 2751–2764.
31Boden, G & Shumlaman, GI (2002) Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 32, 14–23.
32Kahn, SE, Hull, RL & Utzschneider, KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846.
33You, M & Rogers, CQ (2009) Adiponectin: a key adipokine in alcoholic fatty liver. Exp Biol Med (Maywood) 234, 850–859.
34Lihn, AS, Pedersen, SB & Richelsen, B (2005) Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev 6, 13–21.