Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T21:09:38.768Z Has data issue: false hasContentIssue false

The contribution of propionate to glucose synthesis in sheep given diets of different grain content

Published online by Cambridge University Press:  09 March 2007

G. J. Judson
Affiliation:
Department of Biochemistry and Nutrition, School of Rural Science, University of New England, Armidale, NSW 2351, Australia
Elizabeth Anderson
Affiliation:
Department of Biochemistry and Nutrition, School of Rural Science, University of New England, Armidale, NSW 2351, Australia
J. R. Luick
Affiliation:
Department of Biochemistry and Nutrition, School of Rural Science, University of New England, Armidale, NSW 2351, Australia
R. A. Leng
Affiliation:
Department of Biochemistry and Nutrition, School of Rural Science, University of New England, Armidale, NSW 2351, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Glucose entry rates into the blood and propionate production rates in the rumen have been measured in sheep given rations containing varying proportions of starch and roughage (lucerne).

2. Glucose entry rates and propionate production rates were similar for all rations studied.

3. The proportion of the glucose entry rate arising from propionate produced in the rumen was highest on the ration containing the greatest quantity of lucerne and decreased as the proportion of starch in the ration increased. Rate of conversion of propionate into glucose was estimated and was found to decrease as the amount of starch in the ration increased.

4. Concentrations of total volatile fatty acids (VFA) in the ruminal fluid were lowest in the ration with the greatest proportion of starch, implying lower VFA production rates with the starch rations although intakes of digestible energy were approximately the same. The mean concentrations and rates of production of propionate in ruminal fluid were similar for all rations.

5. The low VFA concentrations and the reduced conversion of propionate into glucose on the high rations, despite similar propionate production rates and glucose entry rates, may have been due to starch escaping ruminal fermentation. It is suggested that this glucose absorption may have reduced gluconeogenesis from propionate.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1968

References

Annison, E. F. & White, R. R. (1961). Biochem. J. 80, 162.CrossRefGoogle Scholar
Armstrong, D. G. (1965). In Second International Symposium on the Physiology of Digestion in the Ruminant, Ames, Iowa, 1964, p. 272. [Dougherty, R. W., Allen, R. S., Burroughs, W., Jacobson, N. L. and McGilliard, A. D., editors.] Washington D. C.: Butterworth Inc.Google Scholar
Bergman, E. N. (1963). Am. J. Physiol. 204, 147.CrossRefGoogle Scholar
Bergman, E. N., Reid, R. S., Murray, M. G., Brockway, J. M. & Whitelaw, F. G. (1965). Biochem. J. 97, 53.CrossRefGoogle Scholar
Bergman, E. N., Roe, W. E. & Kon, K. (1966). Am. J. Physiol. 211, 793.CrossRefGoogle Scholar
Cahill, G. F. Jr, Ashmore, J., Earle, A. S. & Zottu, S. (1958). Am. J. Physiol. 192, 491.CrossRefGoogle Scholar
Cahill, G. F. Jr, Ashmore, J., Renold, A. E. & Hastings, A. B. (1959). Am. J. Med. 26, 264.CrossRefGoogle Scholar
Cahill, G. F. Jr, Leboeuf, B. & Renold, A. E. (1960). Am. J. clin. Nutr. 8, 733.CrossRefGoogle Scholar
Ford, E. J. H. (1963). Biochem. J. 88, 427.CrossRefGoogle Scholar
Ford, E. J. H. (1965). J. agric. Sci., Camb. 65, 41.CrossRefGoogle Scholar
Huggett, A. StG. & Nixon, D. A. (1957). Biochem. J. 66, 12P.Google Scholar
Jones, G. B. (1965). Analyt. Biochem. 12, 249.CrossRefGoogle Scholar
Krebs, H. (1964). Proc. R. Soc. B 159, 545.Google Scholar
Kronfeld, D. S. & Simesen, M. G. (1961). Am. J. Physiol. 201, 639.CrossRefGoogle Scholar
Landau, B. R., Leonards, J. R. & Barry, F. M. (1961). Am. J. Physiol. 201, 41.CrossRefGoogle Scholar
Leng, R. A. & Brett, D. J. (1966). Br. J. Nutr. 20, 541.CrossRefGoogle Scholar
Leng, R. A., Corbett, J. L. & Brett, D. J. (1968). Br. J. Nutr. 22, 57.CrossRefGoogle Scholar
Leng, R. A. & Leonard, G. J. (1965). Br. J. Nutr. 19, 469.CrossRefGoogle Scholar
Leng, R. A., Steel, J. W. & Luick, J. R. (1967). Biochem. J. 103, 785.CrossRefGoogle Scholar
Lindsay, D. B. (1959). Vet. Rev. Annot. 5, 103.Google Scholar
Lynn, W. S., MacLeod, R. M. & Brown, R. H. (1960). J. biol. Chem. 235, 1904.CrossRefGoogle Scholar
McRae, J. C. & Armstrong, D. G. (1966). Proc. Nutr. Soc. 25, 33.Google Scholar
Reichard, G. A., Friedmann, B., Maass, A. R. & Weinhouse, S. (1958). J. biol. Chem. 230, 387.CrossRefGoogle Scholar
Searle, G. L. & Chaikoff, I. L. (1952). Am. J. Physiol. 170, 456.CrossRefGoogle Scholar
Shapiro, B., Chowers, I. & Rose, G. (1957). Biochim. biophys. Acta 23, 115.CrossRefGoogle Scholar
Soskin, S., Essex, H. E., Herrick, J. F. & Mann, F. C. (1938). Am. J. Physiol. 124, 558.CrossRefGoogle Scholar
Steele, R. (1959). Metabolism 8, 512.Google Scholar
Steele, R., Bishop, J. S. & Levine, R. (1959). Am. J. Physiol. 197, 60.CrossRefGoogle Scholar
West, C. E. & Passey, R. F. (1967). Biochem. J. 102, 58.CrossRefGoogle Scholar