Skip to main content Accessibility help
×
Home

Comparative validity of vitamin C and carotenoids as indicators of fruit and vegetable intake: a systematic review and meta-analysis of randomised controlled trials

  • Mary Pennant (a1), Marinka Steur (a2) (a3), Carmel Moore (a2) (a3), Adam Butterworth (a2) (a3) and Laura Johnson (a2) (a3) (a4)...

Abstract

Circulating vitamin C and carotenoids are used as biomarkers of fruit and vegetable intake in research, but their comparative validity has never been meta-analysed. PubMed, EMBASE, CENTRAL, CINAHL and Web of Science were systematically searched up to December 2013 for randomised trials of different amounts of fruit and vegetable provision on changes in blood concentrations of carotenoids or vitamin C. Reporting followed PRISMA guidelines. Evidence quality was assessed using the GRADE system. Random effects meta-analysis combined estimates and meta-regression tested for sub-group differences. In all, nineteen fruit and vegetable trials (n 1382) measured at least one biomarker, of which nine (n 667) included five common carotenoids and vitamin C. Evidence quality was low and between-trial heterogeneity (I 2) ranged from 74 % for vitamin C to 94 % for α-carotene. Groups provided with more fruit and vegetables had increased blood concentrations of vitamin C, α-carotene, β-carotene, β-cryptoxanthin and lutein but not lycopene. However, no clear dose–response effect was observed. Vitamin C showed the largest between-group difference in standardised mean change from the pre-intervention to the post-intervention period (smd 0·94; 95 % CI 0·66, 1·22), followed by lutein (smd 0·70; 95 % CI 0·37, 1·03) and α-carotene (smd 0·63; 95 % CI 0·25, 1·01), but all CI were overlapping, suggesting that none of the biomarkers responded more than the others. Therefore, until further evidence identifies a particular biomarker to be superior, group-level compliance to fruit and vegetable interventions can be indicated equally well by vitamin C or a range of carotenoids. High heterogeneity and a lack of dose–response suggest that individual-level biomarker responses to fruit and vegetables are highly variable.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Comparative validity of vitamin C and carotenoids as indicators of fruit and vegetable intake: a systematic review and meta-analysis of randomised controlled trials
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Comparative validity of vitamin C and carotenoids as indicators of fruit and vegetable intake: a systematic review and meta-analysis of randomised controlled trials
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Comparative validity of vitamin C and carotenoids as indicators of fruit and vegetable intake: a systematic review and meta-analysis of randomised controlled trials
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: L. Johnson, fax +44 117 3310418, email Laura.Johnson@bristol.ac.uk

References

Hide All
1. Wang, X, Ouyang, Y, Liu, J, et al. (2014) Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 349, g4990.
2. Aune, D, Chan, DS, Vieira, AR, et al. (2012) Dietary compared with blood concentrations of carotenoids and breast cancer risk: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 96, 356373.
3. Pereira, MA (2013) Diet beverages and the risk of obesity, diabetes, and cardiovascular disease: a review of the evidence. Nutr Rev 71, 433440.
4. Liu, H, Wang, XC, Hu, GH, et al. (2015) Fruit and vegetable consumption and risk of bladder cancer: an updated meta-analysis of observational studies. Eur J Cancer Prev (epublication ahead of print 30 January 2015).
5. World Health Organization (2004) Fruit and vegetables for health. Report of a joint FAO/WHO workshop. http://www.who.int/dietphysicalactivity/publications/fruit_vegetables_report.pdf?ua=1 (accessed July 2015).
6. Bhattarai, N, Prevost, AT, Wright, AJ, et al. (2013) Effectiveness of interventions to promote healthy diet in primary care: systematic review and meta-analysis of randomised controlled trials. BMC Public Health 13, 12031217.
7. Freedman, LS, Commins, JM, Moler, JE, et al. (2014) Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for energy and protein intake. Am J Epidemiol 180, 172188.
8. Hebert, JR, Hurley, TG, Peterson, KE, et al. (2008) Social desirability trait influences on self-reported dietary measures among diverse participants in a multicenter multiple risk factor trial. J Nutr 138, 226S234S.
9. Miller, T, Abdel-Maksoud, M, Crane, L, et al. (2008) Effects of social approval bias on self-reported fruit and vegetable consumption: a randomized controlled trial. Nutr J 7, 1825.
10. Jenab, M, Slimani, N, Bictash, M, et al. (2009) Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet 125, 507525.
11. Al-Delaimy, WK, Slimani, N, Ferrari, P, et al. (2005) Plasma carotenoids as biomarkers of intake of fruits and vegetables: ecological-level correlations in the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Clin Nutr 59, 13971408.
12. Andersen, LF, Veierod, MB, Johansson, L, et al. (2005) Evaluation of three dietary assessment methods and serum biomarkers as measures of fruit and vegetable intake, using the method of triads. Br J Nutr 93, 519527.
13. Dehghan, M, Akhtar-Danesh, N, McMillan, CR, et al. (2007) Is plasma vitamin C an appropriate biomarker of vitamin C intake? A systematic review and meta-analysis. Nutr J 6, 4153.
14. Baldrick, FR, Woodside, JV, Elborn, JS, et al. (2011) Biomarkers of fruit and vegetable intake in human intervention studies: a systematic review. Crit Rev Food Sci Nutr 51, 795815.
15. Rantala, M, Silaste, ML, Tuominen, A, et al. (2002) Dietary modifications and gene polymorphisms alter serum paraoxonase activity in healthy women. J Nutr 132, 30123017.
16. Crane, TE, Kubota, C, West, JL, et al. (2011) Increasing the vegetable intake dose is associated with a rise in plasma carotenoids without modifying oxidative stress or inflammation in overweight or obese postmenopausal women. J Nutr 141, 18271833.
17. Dragsted, LO, Pedersen, A, Hermetter, A, et al. (2004) The 6-a-day study: effects of fruit and vegetables on markers of oxidative stress and antioxidative defense in healthy nonsmokers. Am J Clin Nutr 6, 10601072.
18. Berry, SE, Mulla, UZ, Chowienczyk, PJ, et al. (2010) Increased potassium intake from fruit and vegetables or supplements does not lower blood pressure or improve vascular function in UK men and women with early hypertension: a randomised controlled trial. Br J Nutr 104, 18391847.
19. Higgins, JP, Altman, DG, Gotzsche, PC, et al. (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343, d5928.
20. Guyatt, GH, Oxman, AD, Schunemann, HJ, et al. (2011) GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology . J Clin Epidemiol 64, 380382.
21. Abete, I, Romaguera, D, Vieira, AR, et al. (2014) Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: a meta-analysis of cohort studies. Br J Nutr 112, 762775.
22. NHS-Choices (2013) 5 A Day portion sizes. http://www.nhs.uk/Livewell/5ADAY/Pages/Portionsizes.aspx (accessed July 2015).
23. Gill, CI, Haldar, S, Porter, S, et al. (2004) The effect of cruciferous and leguminous sprouts on genotoxicity, in vitro and in vivo . Cancer Epidemiol Biomarkers Prev 13, 11991205.
24. Thompson, HJ, Heimendinger, J, Diker, A, et al. (2006) Dietary botanical diversity affects the reduction of oxidative biomarkers in women due to high vegetable and fruit intake. J Nutr 136, 22072212.
25. Higgins, JP, Thompson, SG, Deeks, JJ, et al. (2003) Measuring inconsistency in meta-analyses. BMJ 327, 557560.
26. Baldrick, FR, Elborn, JS, Woodside, JV, et al. (2012) Effect of fruit and vegetable intake on oxidative stress and inflammation in COPD: a randomised controlled trial. Eur Resp J 39, 13771384.
27. Briviba, K, Bub, A, Moseneder, J, et al. (2008) No differences in DNA damage and antioxidant capacity between intervention groups of healthy, nonsmoking men receiving 2, 5, or 8 servings/day of vegetables and fruit. Nutr Cancer 60, 164170.
28. Broekmans, WM, Klopping-Ketelaars, IA, Schuurman, CR, et al. (2000) Fruits and vegetables increase plasma carotenoids and vitamins and decrease homocysteine in humans. J Nutr 130, 15781583.
29. Chong, MF, George, TW, Alimbetov, D, et al. (2013) Impact of the quantity and flavonoid content of fruits and vegetables on markers of intake in adults with an increased risk of cardiovascular disease: the FLAVURS trial. Eur J Nutr 52, 361378.
30. McCall, DO, McGartland, CP, McKinley, MC, et al. (2009) Dietary intake of fruits and vegetables improves microvascular function in hypertensive subjects in a dose-dependent manner. Circulation 119, 21532160.
31. Neville, CE, Young, IS, Gilchrist, SECM, et al. (2013) Effect of increased fruit and vegetable consumption on physical function and muscle strength in older adults. Age (Dordr) 35, 24092422.
32. van het Hof, KH, Tijburg, LBM, Pietrzik, K, et al. (1999) Influence of feeding different vegetables on plasma levels of carotenoids, folate and vitamin C. Effect of disruption of the vegetable matrix. Br J Nutr 82, 203212.
33. Wallace, IR, McEvoy, CT, Hunter, SJ, et al. (2013) Dose-response effect of fruit and vegetables on insulin resistance in people at high risk of cardiovascular disease: a randomized controlled trial. Diabetes Care 36, 38883896.
34. Brevik, A, Andersen, LF, Karlsen, A, et al. (2004) Six carotenoids in plasma used to assess recommended intake of fruits and vegetables in a controlled feeding study. Eur J Clin Nutr 58, 11661173.
35. Moller, P, Vogel, U, Pedersen, A, et al. (2003) No effect of 600 grams fruit and vegetables per day on oxidative DNA damage and repair in healthy nonsmokers. Cancer Epidemiol Biomarkers Prev 12, 10161022.
36. Thompson, HJ, Heimendinger, J, Sedlacek, S, et al. (2005) 8-Isoprostane F2alpha excretion is reduced in women by increased vegetable and fruit intake. Am J Clin Nutr 82, 768776.
37. Thompson, HJ, Heimendinger, J, Gillette, C, et al. (2005) In vivo investigation of changes in biomarkers of oxidative stress induced by plant food rich diets. J Agric Food Chem 53, 61266132.
38. Martini, MC, Campbell, DR, Gross, MD, et al. (1995) Plasma carotenoids as biomarkers of vegetable intake: the University of Minnesota Cancer Prevention Research Unit Feeding Studies. Cancer Epidemiol Biomarkers Prev 4, 491496.
39. Howe, JA, Valentine, AR, Hull, AK, et al. (2009) 13C natural abundance in serum retinol acts as a biomarker for increases in dietary provitamin A. Exp Biol Med (Maywood) 234, 140147.
40. Levine, M, Dhariwal, KR, Welch, RW, et al. (1995) Determination of optimal vitamin C requirements in humans. Am J Clin Nutr 62, 1347S1356S.
41. Dimitrov, NV, Meyer, C, Ullrey, DE, et al. (1988) Bioavailability of beta-carotene in humans. Am J Clin Nutr 48, 298304.
42. Giovannucci, E (2013) Nutrient biomarkers are not always simple markers of nutrient intake. Am J Clin Nutr 97, 657659.
43. van Het Hof, KH, West, CE, Weststrate, JA, et al. (2000) Dietary factors that affect the bioavailability of carotenoids. J Nutr 130, 503506.

Keywords

Type Description Title
WORD
Supplementary materials

Pennant supplementary material
Pennant supplementary material 1

 Word (1.3 MB)
1.3 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed