Skip to main content Accessibility help
×
Home

Collagen peptide ingestion alters lipid metabolism-related gene expression and the unfolded protein response in mouse liver

  • Chisa Tometsuka (a1), Yoh-ichi Koyama (a1), Tomoko Ishijima (a2), Tsudoi Toyoda (a2), Miki Teranishi (a3), Kazushige Takehana (a3), Keiko Abe (a2) (a4) and Yuji Nakai (a2) (a5)...

Abstract

Ingestion of collagen peptide (CP) elicits beneficial effects on the body, including improvement in blood lipid profiles, but the underlying mechanisms remain unclear. The purpose of this study was to investigate the effects of CP ingestion on the liver, which controls lipid metabolism in the body. Male BALB/cCrSlc mice were bred with the AIN-93M diet containing 14 % casein or the AIN-93M-based low-protein diet containing 10 % casein or a diet containing 6 % casein+4 % CP for 10 weeks (n 12/group). Total, free and esterified cholesterol levels in the blood decreased in the CP group. DNA microarray analysis of the liver revealed that expressions of genes related to lipid metabolic processes such as the PPAR signalling pathway and fatty acid metabolism increased in the CP group compared with the 10 % casein group. The expressions of several genes involved in steroid metabolic process, including Cyp7a1 and Cyp8b1, were decreased, despite being targets of transcriptional regulation by PPAR. These data suggest that lipid metabolism in the liver is altered by CP ingestion, and the decrease in blood cholesterol levels in the CP group is not due to enhancement of the steroid metabolic process. On the other hand, expressions of genes related to the unfolded protein response (UPR) significantly decreased at the mRNA level, suggesting that CP ingestion lowers endoplasmic reticulum stress. Indeed, protein levels of phosphorylated inositol-requiring enzyme 1 decreased after CP ingestion. Taken together, CP affects the broader pathways in the liver – not only lipid metabolism but also UPR.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Collagen peptide ingestion alters lipid metabolism-related gene expression and the unfolded protein response in mouse liver
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Collagen peptide ingestion alters lipid metabolism-related gene expression and the unfolded protein response in mouse liver
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Collagen peptide ingestion alters lipid metabolism-related gene expression and the unfolded protein response in mouse liver
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Y. Nakai, fax +81 17 781 7071, email yunakai@hirosaki-u.ac.jp

References

Hide All
1. Eastoe, JE (1967) Composition of collagen and allied proteins. In Treaties on Collagen, vol. 1, pp. 172 [GN Ramachandran, editor]. London: Academic Press.
2. Koyama, Y, Hirota, A, Mori, H, et al. (2001) Ingestion of gelatin has differential effect on bone mineral density and body weight in protein undernutrition. J Nutr Sci Vitaminol (Tokyo) 47, 8486.
3. Wu, J, Fujioka, M, Sugimoto, K, et al. (2004) Assessment of effectiveness of oral administration of collagen peptide on bone metabolism in growing and mature rats. J Bone Miner Metab 22, 547553.
4. Zdzieblik, D, Oesser, S, Baumstark, MW, et al. (2015) Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: a randomised controlled trial. Br J Nutr 114, 12371245.
5. Walrand, S, Chiotelli, E, Noirt, F, et al. (2008) Consumption of a functional fermented milk containing collagen hydrolysate improves the concentration of collagen-specific amino acids in plasma. J Agric Food Chem 56, 77907795.
6. Schauss, AG, Stenehjem, J, Park, J, et al. (2012) Effect of the novel low molecular weight hydrolyzed chicken sternal cartilage extract, BioCell Collagen, on improving osteoarthritis-related symptoms: a randomized, double-blind, placebo-controlled trial. J Agric Food Chem 60, 40964101.
7. Minaguchi, J, Koyama, Y, Meguri, N, et al. (2005) Effects of ingestion of collagen peptide on collagen fibrils and glycosaminoglycans in Achilles tendon. J Nutr Sci Vitaminol (Tokyo) 51, 169174.
8. Matsuda, N, Koyama, Y, Hosaka, Y, et al. (2006) Effects of ingestion of collagen peptide on collagen fibrils and glycosaminoglycans in the dermis. J Nutr Sci Vitaminol (Tokyo) 52, 211215.
9. Saiga, A, Iwai, K, Hayakawa, T, et al. (2008) Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. J Agric Food Chem 56, 95869591.
10. Herregods, G, Van Camp, J, Morel, N, et al. (2011) Angiotensin I-converting enzyme inhibitory activity of gelatin hydrolysates and identification of bioactive peptides. J Agric Food Chem 59, 552558.
11. Ratnayake, WM, Sarwar, G & Laffey, P (1997) Influence of dietary protein and fat on serum lipids and metabolism of essential fatty acids in rats. Br J Nutr 78, 459467.
12. Lin, B, Zhang, F, Yu, Y, et al. (2012) Marine collagen peptides protect against early alcoholic liver injury in rats. Br J Nutr 107, 11601166.
13. Oliveira, DR, Portugal, LR, Cara, DC, et al. (2001) Gelatin intake increases the atheroma formation in apoE knock out mice. Atherosclerosis 154, 7177.
14. Koyama, Y & Kusubata, M (2013) Effects of collagen peptide ingestion on blood lipids in rats fed a high-lipid and high-sucrose diet. Food Sci Technol Res 19, 11491153.
15. Terpstra, AH, Hermus, RJ & West, CE (1983) The role of dietary protein in cholesterol metabolism. World Rev Nutr Diet 42, 155.
16. Tsung, A, Geller, DA, Colnot, S, et al. (2011) Part I, liver cells and functions. In Molecular Pathology of Liver Diseases, Molecular Pathology Library 5, pp. 1180 [SP Monga, editor]. New York: Springer.
17. Hochreiter, S, Clevert, DA & Obermayer, K (2006) A new summarization method for Affymetrix probe level data. Bioinformatics 22, 943949.
18. R Development Core Team (2008) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
19. Gentleman, RC, Carey, VJ, Bates, DM, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5, R80.
20. Breitling, R, Armengaud, P, Amtmann, A, et al. (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573, 8392.
21. Huang da, W, Sherman, BT & Lempicki, RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 4457.
22. Hosack, DA, Dennis, G Jr, Sherman, BT, et al. (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4, R70.
23. Benjamini, Y & Hochberg, Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57, 289300.
24. Pyper, SR, Viswakarma, N, Yu, S, et al. (2010) PPARα: energy combustion, hypolipidemia, inflammation and cancer. Nucl Recept Signal 8, e002.
25. Grygiel-Górniak, B (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications – a review. Nutr J 13, 17.
26. Pawlak, M, Lefebvre, P & Staels, B (2015) Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62, 720733.
27. Mezei, O, Banz, WJ, Steger, RW, et al. (2003) Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells. J Nutr 133, 12381243.
28. Inoue, H, Jiang, XF, Katayama, T, et al. (2003) Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor alpha in mice. Neurosci Lett 352, 203206.
29. Yajima, H, Ikeshima, E, Shiraki, M, et al. (2004) Isohumulones, bitter acids derived from hops, activate both peroxisome proliferator-activated receptor alpha and gamma and reduce insulin resistance. J Biol Chem 279, 3345633462.
30. Han, KL, Choi, JS, Lee, JY, et al. (2008) Therapeutic potential of peroxisome proliferators-activated receptor-alpha/gamma dual agonist with alleviation of endoplasmic reticulum stress for the treatment of diabetes. Diabetes 57, 737745.
31. Tan, S, Gao, B, Tao, Y, et al. (2014) Antiobese effects of capsaicin-chitosan microsphere (CCMS) in obese rats induced by high fat diet. J Agric Food Chem 62, 18661874.
32. Purushotham, A, Schug, TT, Xu, Q, et al. (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9, 327338.
33. Moreno, M, Lombardi, A, Silvestri, E, et al. (2010) PPARs: nuclear receptors controlled by, and controlling, nutrient handling through nuclear and cytosolic signaling. PPAR Res, 2010 Article ID 435689.
34. Yan, S, Yang, XF, Liu, HL, et al. (2015) Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: an update. World J Gastroenterol 21, 34923498.
35. Forman, BM, Chen, J & Evans, RM (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci U S A 94, 43124317.
36. Nagaoka, S, Awano, T, Nagata, N, et al. (1997) Serum cholesterol reduction and cholesterol absorption inhibition in CaCo-2 cells by a soyprotein peptic hydrolyzate. Biosci Biotechnol Biochem 61, 354356.
37. Nagaoka, S, Futamura, Y, Miwa, K, et al. (2001) Identification of novel hypocholesterolemic peptides derived from bovine milk beta-lactoglobulin. Biochem Biophys Res Commun 281, 1117.
38. Wang, L, Lee, YK, Bundman, D, et al. (2002) Redundant pathways for negative feedback regulation of bile acid production. Dev Cell 2, 721731.
39. Matsuzawa, Y, Funahashi, T, Kihara, S, et al. (2004) Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol 24, 2933.
40. Fisman, EZ & Tenenbaum, A (2014) Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol 13, 103.
41. Ron, D & Walter, P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8, 519529.
42. Jo, H, Choe, SS, Shin, KC, et al. (2013) Endoplasmic reticulum stress induces hepatic steatosis via increased expression of the hepatic very low-density lipoprotein receptor. Hepatology 57, 13661377.
43. Kaneko, M, Ishiguro, M, Niinuma, Y, et al. (2002) Human HRD1 protects against ER stress-induced apoptosis through ER-associated degradation. FEBS Lett 532, 147152.
44. Lee, AH, Iwakoshi, NN & Glimcher, LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23, 74487459.
45. Oda, Y, Okada, T, Yoshida, H, et al. (2006) Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J Cell Biol 172, 383393.
46. Iwai, K, Hasegawa, T, Taguchi, Y, et al. (2005) Identification of food-derived collagen peptides in human blood after oral ingestion of gelatin hydrolysates. J Agric Food Chem 53, 65316536.
47. Ohara, H, Matsumoto, H, Ito, K, et al. (2007) Comparison of quantity and structures of hydroxyproline-containing peptides in human blood after oral ingestion of gelatin hydrolysates from different sources. J Agric Food Chem 55, 15321535.
48. Ichikawa, S, Morifuji, M, Ohara, H, et al. (2010) Hydroxyproline-containing dipeptides and tripeptides quantified at high concentration in human blood after oral administration of gelatin hydrolysate. Int J Food Sci Nutr 61, 5260.
49. Shigemura, Y, Akaba, S, Kawashima, E, et al. (2011) Identification of a novel food-derived collagen peptide, hydroxyprolyl-glycine, in human peripheral blood by pre-column derivatisation with phenyl isothiocyanate. Food Chem 129, 10191024.
50. Taga, Y, Kusubata, M, Ogawa-Goto, K, et al. (2014) Highly accurate quantification of hydroxyproline-containing peptides in blood using a protease digest of stable isotope-labeled collagen. J Agric Food Chem 62, 1209612102.
51. Shigemura, Y, Iwai, K, Morimatsu, F, et al. (2009) Effect of prolyl-hydroxyproline (Pro-Hyp), a food-derived collagen peptide in human blood, on growth of fibroblasts from mouse skin. J Agric Food Chem 57, 444449.
52. Minaguchi, J, Tometsuka, C, Koyama, Y, et al. (2012) Effects of collagen-derived oligopeptide prolylhydroxyproline on differentiation of mouse 3T3-L1 preadipocytes. Food Sci Technol Res 18, 593599.
53. Nakatani, S, Mano, H, Sampei, C, et al. (2009) Chondroprotective effect of the bioactive peptide prolyl-hydroxyproline in mouse articular cartilage in vitro and in vivo . Osteoarthritis Cartilage 17, 16201627.
54. Smith, DE, Clémençon, B & Hediger, MA (2013) Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med 34, 323336.

Keywords

Related content

Powered by UNSILO
Type Description Title
UNKNOWN
Supplementary materials

Tometsuka supplementary material S1
Supplementary Figure

 Unknown (1.6 MB)
1.6 MB
EXCEL
Supplementary materials

Tometsuka supplementary material S2
Supplementary Table

 Excel (1.3 MB)
1.3 MB

Collagen peptide ingestion alters lipid metabolism-related gene expression and the unfolded protein response in mouse liver

  • Chisa Tometsuka (a1), Yoh-ichi Koyama (a1), Tomoko Ishijima (a2), Tsudoi Toyoda (a2), Miki Teranishi (a3), Kazushige Takehana (a3), Keiko Abe (a2) (a4) and Yuji Nakai (a2) (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.