Skip to main content Accessibility help
×
Home

Cinnamaldehyde enhances in vitro parameters of immunity and reduces in vivo infection against avian coccidiosis

  • Sung Hyen Lee (a1), Hyun S. Lillehoj (a1), Seung I. Jang (a1), Kyung Woo Lee (a1), Myeong Seon Park (a1), David Bravo (a2) and Erik P. Lillehoj (a3)...

Abstract

The effects of cinnamaldehyde (CINN) on in vitro parameters of immunity and in vivo protection against avian coccidiosis were evaluated. In vitro stimulation of chicken spleen lymphocytes with CINN (25–400 ng/ml) induced greater cell proliferation compared with the medium control (P < 0·001). CINN activated cultured macrophages to produce higher levels of NO at 1·2–5·0 μg/ml (P < 0·001), inhibited the growth of chicken tumour cells at 0·6–2·5 μg/ml (P < 0·001) and reduced the viability of Eimeria tenella parasites at 10 and 100 μg/ml (P < 0·05 and P < 0·001, respectively), compared with media controls. In chickens fed a diet supplemented with CINN at 14·4 mg/kg, the levels of IL-1β, IL-6, IL-15 and interferon-γ transcripts in intestinal lymphocytes were 2- to 47-fold higher (P < 0·001) compared with chickens given a non-supplemented diet. To determine the effect of CINN diets on avian coccidiosis, chickens were fed diets supplemented with CINN at 14·4 mg/kg (E. maxima or E. tenella) or 125 mg/kg (E. acervulina) from hatch for 24 d, and orally infected with 2·0 × 104 sporulated oocysts at age 14 d. CINN-fed chickens showed 16·5 and 41·6 % increased body-weight gains between 0–9 d post-infection (DPI) with E. acervulina or E. maxima, reduced E. acervulina oocyst shedding between 5–9 DPI and increased E. tenella-stimulated parasite antibody responses at 9 DPI compared with controls.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Cinnamaldehyde enhances in vitro parameters of immunity and reduces in vivo infection against avian coccidiosis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Cinnamaldehyde enhances in vitro parameters of immunity and reduces in vivo infection against avian coccidiosis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Cinnamaldehyde enhances in vitro parameters of immunity and reduces in vivo infection against avian coccidiosis
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Hyun S. Lillehoj, fax +1 301 504 5103, email Hyun.Lillehoj@ars.usda.gov

References

Hide All
1 Lillehoj, HS & Lillehoj, EP (2000) Avian coccidiosis. A review of acquired intestinal immunity and vaccination strategies. Avian Dis 44, 408425.
2 Casewell, M, Friis, C, Marco, E, et al. (2003) The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J Antimicrob Chemother 52, 159161.
3 Lee, S, Park, JB, Park, HJ, et al. (2005) Biological properties of different types and parts of the dandelions: comparisons of anti-oxidative, immune cell proliferative and tumor cell growth inhibitory activities. J Food Sci Nutr 10, 172178.
4 Lee, SH, Lillehoj, HS, Cho, SM, et al. (2009) Immunostimulatory effects of oriental plum (Prunus salicina Lindl.). Comp Immunol Microb 32, 407417.
5 Lee, SH, Lillehoj, HS, Chun, HK, et al. (2008) In vitro effects of methanol extracts of Korean medicinal fruits (persimmon, raspberry, tomato) on chicken lymphocytes, macrophages, and tumor cells. J Poult Sci 46, 149154.
6 Lee, SH, Lillehoj, HS, Hong, YH, et al. (2010) In vitro effects of plant and mushroom extracts on immunological function of chicken lymphocytes and macrophages. Br Poult Sci 51, 213222.
7 Lee, SH, Lillehoj, HS, Park, DW, et al. (2007) Immunomodulatory effects of dietary safflower leaf in chickens. Kor J Community Living Sci 18, 715724.
8 Lee, SH, Lillehoj, HS, Cho, SM, et al. (2008) Protective effects of dietary safflower (Carthamus tinctorius) on experimental coccidiosis. J Poult Sci 46, 155162.
9 Jamroz, D, Wertelecki, T, Houszka, M, et al. (2006) Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken. J Anim Physiol Anim Nutr (Berl) 90, 255268.
10 Burt, SA, Fledderman, MJ, Haagsman, , et al. (2007) Inhibition of Salmonella enterica serotype Enteritidis on agar and raw chicken by carvacrol vapour. Int J Food Microbiol 119, 346350.
11 Lin, CC, Wu, SJ, Chang, CH, et al. (2003) Antioxidant activity of Cinnamomum cassia. Phytother Res 17, 726730.
12 Cheng, SS, Liu, JY, Tsai, KH, et al. (2004) Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem 52, 43954400.
13 Kim, HO, Park, SW, Park, HD, et al. (2004) Inactivation of Escherichia coli O157, H7 by cinnamaldehyde purified from Cinnamomum cassia shoot. Food Microbiol 21, 105110.
14 Koh, WS, Yoon, SY, Kwon, BM, et al. (1998) Cinnamaldehyde inhibits lymphocyte proliferation and modulates T-cell differentiation. Int J Immunopathol Pharmacol 20, 643660.
15 Moon, KH & Pack, M (1983) Cytotoxicity of cinnamic aldehyde on leukemia L1210 cells. Drug Chem Toxicol 6, 521535.
16 Imai, T, Yasuhara, K, Tamura, T, et al. (2002) Inhibitory effects of cinnamaldehyde on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung carcinogenesis in rasH2 mice. Cancer Lett 175, 916.
17 Wu, SJ & Ng, LT (2007) MAPK inhibitors and pifithrin-α block cinnamaldehyde-induced apoptosis in human PLC/PRF/5 cells. Food Chem Toxicol 45, 24462453.
18 Ng, LT & Wu, SJ (2009) Antiproliferative activity of Cinnamomum cassia constituents and effects of pifithrin-α on their apoptotic signaling pathways in Hep G2 cells. Evid Based Complement Alternat Med (epublication ahead of print version 28 December 2009).
19 Cabello, CM, Bair, WB, Lamore, SD, et al. (2009) The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth. Free Radic Biol Med 46, 220231.
20 Rhodes, MC (1996) Physiologically active compounds in plant foods. An overview. Proc Nutr Soc 55, 371384.
21 Roselli, M, Britti, MS, Le Huërou-Luron, I, et al. (2007) Effect of different plant extracts and natural substances (PENS) against membrane damage induced by enterotoxigenic Escherichia coli K88 in pig intestinal cells. Toxicol In Vitro 21, 224229.
22 Tschirch, H (2000) The use of natural plant extracts as production enhancers in modern animal rearing practices. Zeszyty Naukowe AR Wroclaw, Zootechnika XXV 376, 2539.
23 Jamroz, D, Wiliczkiewicz, A, Wertelecki, T, et al. (2005) Use of active substances of plant origin in chicken diets based on maize and locally grown cereals. Br Poult Sci 46, 485493.
24 McElroy, AP, Manning, JG, Jaeger, LA, et al. (1994) Effect of prolonged administration of dietary capsaicin on broiler growth and Salmonella enteritidis susceptibility. Avian Dis 38, 329333.
25 Hernández, F, Madrid, J, García, V, et al. (2004) Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult Sci 83, 169174.
26 Kim, DK, Lillehoj, HS, Lee, HS, et al. (2010) High-throughput gene expression analysis of intestinal intraepithelial lymphocytes after oral feeding of carvacrol, cinnamaldehyde, or Capsicum oleoresin. Poult Sci 89, 6881.
27 Lillehoj, HS & Choi, KD (1998) Recombinant chicken interferon-γ-mediated inhibition of Eimeria tenella development in vitro and reduction of oocyst production and body weight loss following Eimeria acervulina challenge infection. Avian Dis 42, 307314.
28 Muller, PY, Janovjak, H, Miserez, AR, et al. (2002) Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32, 13721379.
29 Lee, SH, Lillehoj, HS, Cho, SM, et al. (2008) Immunomodulatory properties of dietary plum on coccidiosis. Comp Immunol Microb 31, 389402.
30 Lee, SH, Lillehoj, HS, Jang, SI, et al. (2010) Effect of dietary Curcuma, Capsicum, and Lentinus on enhancing local immunity against Eimeria acervulina infection. J Poult Sci 47, 8995.
31 Lee, SH, Lillehoj, HS, Park, DW, et al. (2007) Effects of Pediococcus- and Saccharomyces-based probiotic (MitoMax®) on coccidiosis broiler chickens. Comp Immunol Microb 30, 261268.
32 Idris, AB, Bounous, DI, Goodwin, MA, et al. (1997) Lack of correlation between microscopic lesion scores and gross lesion scores in commercially grown broilers examined for small intestinal Eimeria spp. coccidiosis. Avian Dis 41, 388391.
33 Okamura, M, Lillehoj, HS, Raybourne, RB, et al. (2005) Differential responses of macrophages to Salmonella enterica serovars Enteritidis and Typhimurium. Vet Immunol Immunopathol 107, 327335.
34 Sakagami, H, Aoki, T, Simpson, A, et al. (1991) Induction of immunopotentiation activity by a protein-bound polysaccharide, PSK. Anticancer Res 11, 993999.
35 Suzuki, M, Takatsuki, F, Maeda, YY, et al. (1994) Antitumor and immunological activity of lentinan in comparison with LPS. Int J Immunopharmacol 16, 463468.
36 Kim, BH, Lee, YG, Lee, J, et al. (2010) Regulatory effect of cinnamaldehyde on monocyte/macrophage-mediated inflammatory responses. Mediators Inflamm 2010, 529359.
37 Dinarello, CA (1994) The interleukin-1 family: 10 years of discovery. FASEB J 8, 13141325.
38 Waldmann, TA & Tagaya, Y (1999) The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 17, 1949.
39 Choi, KD & Lillehoj, HS (2000) Role of chicken IL-2 on γδ T-cells and Eimeria acervulina-induced changes in intestinal IL-2 mRNA expression and γδ T-cells. Vet Immunol Immunopathol 73, 309321.
40 Lillehoj, HS, Min, W, Choi, KD, et al. (2001) Molecular, cellular, and functional characterization of chicken cytokines homologous to mammalian IL-15 and IL-2. Vet Immunol Immunopathol 82, 229244.
41 Min, W, Lillehoj, HS, Burnside, J, et al. (2001) Adjuvant effects of IL-1β, IL-2, IL-8, IL-15, IFN-α, IFN-γ, TGF-β4 and lymphotactin on DNA vaccination against Eimeria acervulina. Vaccine 20, 267274.

Keywords

Cinnamaldehyde enhances in vitro parameters of immunity and reduces in vivo infection against avian coccidiosis

  • Sung Hyen Lee (a1), Hyun S. Lillehoj (a1), Seung I. Jang (a1), Kyung Woo Lee (a1), Myeong Seon Park (a1), David Bravo (a2) and Erik P. Lillehoj (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed