Skip to main content Accessibility help
×
Home

Changes in the urinary excretion of acid-soluble peptides in rats injected with streptozotocin or dexamethasone: a trial to estimate the changes in the rate of whole-body protein degradation in those rats

  • Taek Jeong Nam (a1), Tadashi Noguchi (a1) and Hiroshi Naito (a1)

Abstract

Urinary excretion of acid-soluble peptides (ASP) was measured in rats given streptozotocin or dexamethasone. Streptozotocin-induced diabetic rats excreted increased amounts of urinary nitrogen and ASP-form amino acids. The urinary ratio for N: ASP-form leucine plus valine, which has been shown to reflect the efficiency of dietary N utilization, increased in the diabetic rats, suggesting the impaired utilization of dietary N (and re-utilization of endogenous N). Dexamethasone administration to adrenalectomized rats caused increased excretion of urinary ASP-form leucine plus valine with a concomitant increase in N excretion. However, urinary ratio for N: ASP-form leucine plus valine did not change significantly. The results suggested that dexamethasone caused increased degradation of body proteins, but maintained the efficiency of dietary N utilization or re-utilization of endogenous N. Based on the present observations and the hypothesis proposed previously by the present authors (Noguchi et al. 1988) that urinary excretion of ASP-form leucine plus valine reflects the rate of whole-body protein degradation and the urinary ratio for N: ASP-form leucine plus valine represents N utilization, the origin of urinary N in streptozotocin-diabetic and dexamethasone-administered rats is discussed

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Changes in the urinary excretion of acid-soluble peptides in rats injected with streptozotocin or dexamethasone: a trial to estimate the changes in the rate of whole-body protein degradation in those rats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Changes in the urinary excretion of acid-soluble peptides in rats injected with streptozotocin or dexamethasone: a trial to estimate the changes in the rate of whole-body protein degradation in those rats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Changes in the urinary excretion of acid-soluble peptides in rats injected with streptozotocin or dexamethasone: a trial to estimate the changes in the rate of whole-body protein degradation in those rats
      Available formats
      ×

Copyright

References

Hide All
Flaim, K. E., Copenhaver, M. E. & Jefferson, L. S. (1980). Effects of diabetes on protein synthesis in fast- and slow-twitch rat skeletal muscle. American Journal of Physiology 239, E88–E95.
Garlick, P. J., Preedy, V. R. & Reeds, P. J. (1985). Regulation of protein turnover in vivo by insulin and amino acids. In Intracellular Protein Catabolism, pp. 555 564 [Khairallah, E. A.,Bond, J. S. and Bird, J. W. C., editors]. New York: Alan R. Liss.
Manchester, K. L. (1970). Site of hormonal regulation of protein metabolism. In Mammalian Protein Metabolism, vol. 4, pp. 254262 [Munro, H. N., editor]. New York and London: Academic Press.
Millward, D. J., Garlick, P. J., Nnanyelugo, D. O. & Waterlow, J. C. (1976). The relative importance of muscle protein synthesis and breakdown in the regulation of muscle mass. Biochemical Journal 156, 185188.
Millward, D. J. & Waterlow, J. C. (1978). Effect of nutrition on protein turnover in skeletal muscle. Federation Proceedings 37, 22832290.
Munro, H. N. (1964). General aspects of the regulation of protein metabolism by diet and by hormones. In Mammalian Protein Metabolism, vol. 1, pp. 381481 [Munro, H. N. and Allison, J. B., editors]. New York and London: Academic Press.
Nagasawa, T., Kadowaki, M., Noguchi, T. & Naito, H. (1982). The effect of insulin on myofibrillar protein degradation in normal and streptozotocin-induced diabetic rats measured by the rate of NT-methylhistidine release from perfused hindquarters. Agricultural and Biological Chemistry 46, 30233027.
Nishizawa, N., Shimbo, M., Noguchi, T., Hareyama, S. & Funabiki, R. (1978). Effect of starvation, refeeding and hydrocortisone administration on turnover of myofibrillar proteins estimated by urinary excretion of NT-methylhistidine in the rat. Agricultural and Biological Chemistry 42, 20832089.
Noguchi, T., Nam, T. J., Kato, H. & Naito, H. (1988). Further studies on the nutritional factors affecting the urinary excretion of acid-soluble peptides in rats. British Journal of Nutrition 60, 321337.
Noguchi, T., Okiyama, A., Naito, H., Kaneko, K. & Koike, G. (1982). Some nutritional and physiological factors affecting the urinary excretion of acid-soluble peptides in rat and women. Agricultural and Biological Chemistry 46, 28212828.
Odedra, B. R., Bates, P. C. & Millward, D. J. (1983). Time course of the effect of catabolic doses of corticosterone on protein turnover in rat skeletal muscle and liver. Biochemical Journal 214, 617627.
Odedra, B. R. & Millward, D. J. (1982). Effect of corticosterone treatment on muscle protein turnover in adrenalectomized rats and diabetic rats maintained on insulin. Biochemical Journal 204, 663672.
Pain, V. M., Albertse, E. C. & Garlick, P. J. (1983). Protein metabolism in skeletal muscle, diaphragm, and heart of diabetic rats. American Journal of Physiology 245, E604–E610.
Pain, V. M. & Garlick, P. J. (1974). Effect of streptozotocin diabetes and insulin treatment on the rate of protein synthesis in tissues of the rat in vivo. Journal of Biological Chemistry 249, 45014514.
Rogers, Q. R. & Harper, A. E. (1965). Amino acid diets and maximal growth in the rat. Journal of Nutrition 87, 267273.
Snedecor, G. W. & Cochran, W. G. (1967 a). Factorial experiments. The split-plot or nested design. In Statistical Methods, 6th ed., pp. 369375. Ames, Iowa: Iowa State University Press.
Snedecor, G. W. & Cochran, W. G. (1967 b). Factorial experiments. The general two-factor experiments. In Statistical Methods, 6th ed., pp. 346349. Ames, Iowa: Iowa State University Press.
Snedecor, G. W. & Cochran, W. G. (1967 c). One-way classifications. Analysis of variance. Inspection of all differences between pairs of means. In Statistical Methods, 6th ed., pp. 271273. Ames, Iowa: Iowa State University Press.
Tomas, F. M., Munro, H. N. & Young, V. R. (1979). Effect of glucocorticoid administration on the rate of muscle protein breakdown in vivo in rats, as measured by urinary excretion of NT-methylhistidine. Biochemical Journal 178, 139146.
Tomas, F. M., Murray, A. J. & Jones, L. M. (1984). Modification in glucocorticoid-induced changes in myofibrillar protein turnover in rats by protein and energy deficiency as assessed by urinary excretion of NTmethylhistidine. British Journal of Nutrition 51, 323337.
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). The effects of nutrition and hormones on protein turnover in muscle. In Protein Turnover in Mammalian Tissues and in the Whole Body, pp. 667681. Amsterdam, New York and Oxford: North-Holland.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed