Skip to main content Accessibility help

Bidirectional associations between food groups and depressive symptoms: longitudinal findings from the Invecchiare in Chianti (InCHIANTI) study

  • Liset E. M. Elstgeest (a1), Marjolein Visser (a1), Brenda W. J. H. Penninx (a2), Marco Colpo (a3), Stefania Bandinelli (a3) and Ingeborg A. Brouwer (a1)...


This study investigated bidirectional associations between intake of food groups and depressive symptoms in 1058 Italian participants (aged 20–102 years) of the Invecchiare in Chianti study. Dietary intake, assessed with a validated FFQ, and depressive symptoms, measured with the Center for Epidemiologic Studies Depression scale (CES-D), were assessed at baseline and after 3, 6 and 9 years. Associations of repeated measurements of intakes of thirteen food groups with 3-year changes in depressive symptoms, and vice versa, were analysed using linear mixed models and logistic generalised estimating equations. Fish intake was inversely (quartile (Q)4 v. Q1, B=–0·97, 95 % CI –1·74, –0·21) and sweet food intake positively (Q4 v. Q1, B=1·03, 95 % CI 0·25, 1·81) associated with subsequent CES-D score. In the other direction, higher CES-D scores were associated with decreases in intakes of vegetables (ratio: 0·995, 95 % CI 0·990, 0·999) and red and processed meat (B=–0·006, 95 % CI –0·010, –0·001), an increase in dairy product intake (ratio: 1·008, 95 % CI 1·004, 1·013), and increasing odds of eating savoury snacks (OR: 1·012, 95 % CI 1·000, 1·024). Fruit, nuts and legumes, potatoes, wholegrain bread, olive oil, sugar-sweetened beverages, and coffee and tea were not significantly associated in either direction. Our study confirmed bidirectional associations between food group intakes and depressive symptoms. Fish and sweet food intakes were associated with 3-year improvement and deterioration in depressive symptoms, respectively. Depressive symptoms were associated with 3-year changes in vegetable, meat, dairy product and savoury snack intakes. Trials are necessary to examine the causal associations between food groups and depression.


Corresponding author

*Corresponding author: L. E. M. Elstgeest, fax +31 20 59 86 940, email


Hide All
1. Hu, FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13, 39.
2. Sánchez-Villegas, A & Martínez-González, MA (2013) Diet, a new target to prevent depression? BMC Med 11, 3.
3. Lai, JS, Hiles, S, Bisquera, A, et al. (2014) A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am J Clin Nutr 99, 181197.
4. Psaltopoulou, T, Sergentanis, TN, Panagiotakos, DB, et al. (2013) Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Ann Neurol 74, 580591.
5. Quirk, SE, Williams, LJ, O’Neil, A, et al. (2013) The association between diet quality, dietary patterns and depression in adults: a systematic review. BMC Psychiatry 13, 175.
6. Rahe, C, Unrath, M & Berger, K (2014) Dietary patterns and the risk of depression in adults: a systematic review of observational studies. Eur J Clin Nutr 53, 9971013.
7. Molendijk, M, Molero, P, Ortuno Sanchez-Pedreno, F, et al. (2018) Diet quality and depression risk: a systematic review and dose–response meta-analysis of prospective studies. J Affect Disord 226, 346354.
8. Montagnese, C, Santarpia, L, Buonifacio, M, et al. (2015) European food-based dietary guidelines: a comparison and update. Nutrition 31, 908915.
9. Gibney, M & Sandström, B (2001) A framework for food-based dietary guidelines in the European Union. Public Health Nutr 4, 293305.
10. Murakami, K & Sasaki, S (2010) Dietary intake and depressive symptoms: a systematic review of observational studies. Mol Nutr Food Res 54, 471488.
11. Sanhueza, C, Ryan, L & Foxcroft, DR (2013) Diet and the risk of unipolar depression in adults: systematic review of cohort studies. J Hum Nutr Diet 26, 5670.
12. Liu, X, Yan, Y, Li, F, et al. (2016) Fruit and vegetable consumption and the risk of depression: a meta-analysis. Nutrition 32, 296302.
13. Saghafian, F, Malmir, H, Saneei, P, et al. (2018) Fruit and vegetable consumption and risk of depression: accumulative evidence from an updated systematic review and meta-analysis of epidemiological studies. Br J Nutr 119, 10871101.
14. Li, F, Liu, X & Zhang, D (2016) Fish consumption and risk of depression: a meta-analysis. J Epidemiol Community Health 70, 299304.
15. Grosso, G, Micek, A, Marventano, S, et al. (2016) Dietary n-3 PUFA, fish consumption and depression: a systematic review and meta-analysis of observational studies. J Affect Dis 205, 269281.
16. Grosso, G, Micek, A, Castellano, S, et al. (2016) Coffee, tea, caffeine and risk of depression: a systematic review and dose–response meta-analysis of observational studies. Mol Nutr Food Res 60, 223234.
17. Smith, KJ, Sanderson, K, McNaughton, SA, et al. (2014) Longitudinal associations between fish consumption and depression in young adults. Am J Epidemiol 179, 12281235.
18. Matsuoka, YJ, Sawada, N, Mimura, M, et al. (2017) Dietary fish, n-3 polyunsaturated fatty acid consumption, and depression risk in Japan: a population-based prospective cohort study. Transl Psychiatry 7, e1242.
19. Sánchez-Villegas, A, Zazpe, I, Santiago, S, et al. (2018) Added sugars and sugar-sweetened beverage consumption, dietary carbohydrate index and depression risk in the Seguimiento Universidad de Navarra (SUN) Project. Br J Nutr 119, 211221.
20. Sánchez-Villegas, A, Henríquez, P, Figueiras, A, et al. (2007) Long chain omega-3 fatty acids intake, fish consumption and mental disorders in the SUN cohort study. Eur J Clin Nutr 46, 337346.
21. Mihrshahi, S, Dobson, AJ & Mishra, GD (2015) Fruit and vegetable consumption and prevalence and incidence of depressive symptoms in mid-age women: results from the Australian longitudinal study on women’s health. Eur J Clin Nutr 69, 585591.
22. Kingsbury, M, Dupuis, G, Jacka, F, et al. (2016) Associations between fruit and vegetable consumption and depressive symptoms: evidence from a national Canadian longitudinal survey. J Epidemiol Community Health 70, 155161.
23. Knüppel, A, Shipley, MJ, Llewellyn, CH, et al. (2017) Sugar intake from sweet food and beverages, common mental disorder and depression: prospective findings from the Whitehall II study. Sci Rep 7, 6287.
24. Appelhans, BM, Whited, MC, Schneider, KL, et al. (2012) Depression severity, diet quality, and physical activity in women with obesity and depression. J Acad Nutr Diet 112, 693698.
25. Jeffery, RW, Linde, JA, Simon, GE, et al. (2009) Reported food choices in older women in relation to body mass index and depressive symptoms. Appetite 52, 238240.
26. Whitaker, KM, Sharpe, PA, Wilcox, S, et al. (2014) Depressive symptoms are associated with dietary intake but not physical activity among overweight and obese women from disadvantaged neighborhoods. Nutr Res 34, 294301.
27. Jacka, FN, Cherbuin, N, Anstey, KJ, et al. (2015) Does reverse causality explain the relationship between diet and depression? J Affect Dis 175, 248250.
28. Vermeulen, E, Stronks, K, Visser, M, et al. (2016) The association between dietary patterns derived by reduced rank regression and depressive symptoms over time: the Invecchiare in Chianti (InCHIANTI) study. Br J Nutr 115, 21452153.
29. Vermeulen, E, Brouwer, IA, Stronks, K, et al. (2018) Inflammatory dietary patterns and depressive symptoms in Italian older adults. Brain Behav Immun 67, 290298.
30. Ferrucci, L, Bandinelli, S, Benvenuti, E, et al. (2000) Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J Am Geriatr Soc 48, 16181625.
31. Radloff, LS (1977) The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas 1, 385401.
32. Beekman, ATF, Deeg, DJH, Van Limbeek, J, et al. (1997) Criterion validity of the Center for Epidemiologic Studies Depression scale (CES-D): results from a community-based sample of older subjects in the Netherlands. Psychol Med 27, 231235.
33. Fava, GA (1983) Assessing depressive symptoms across cultures: Italian validation of the CES-D self-rating scale. J Clin Psychol 39, 249251.
34. Pala, V, Sieri, S, Palli, D, et al. (2003) Diet in the Italian EPIC cohorts: presentation of data and methodological issues. Tumori 89, 594607.
35. Riboli, E, Hunt, KJ, Slimani, N, et al. (2002) European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr 5, 11131124.
36. Pisani, P, Faggiano, F, Krogh, V, et al. (1997) Relative validity and reproducibility of a food frequency dietary questionnaire for use in the Italian EPIC centres. Int J Epidemiol 26, S152S160.
37. Bartali, B, Turrini, A, Salvini, S, et al. (2004) Dietary intake estimated using different methods in two Italian older populations. Arch Gerontol Geriatr 38, 5160.
38. Salvini, S, Parpinel, M, Gnagnarella, P, et al. (1998) Banca dati di composizione degli alimenti per studi epidemiologici in Italia (Food Composition Database for Epidemiological Studies in Italy). Milano: Istituto Europeo di Oncologia.
39. Konttinen, H, Männistö, S, Sarlio-Lähteenkorva, S, et al. (2010) Emotional eating, depressive symptoms and self-reported food consumption. A population-based study. Appetite 54, 473479.
40. Guo, X, Park, Y, Freedman, ND, et al. (2014) Sweetened beverages, coffee, and tea and depression risk among older US adults. PLOS ONE 9, e94715.
41. Sánchez-Villegas, A, Toledo, E, de Irala, J, et al. (2012) Fast-food and commercial baked goods consumption and the risk of depression. Public Health Nutr 15, 424432.
42. Guralnik, JM, Fried, LP, Simonsick, EM, et al. (1995) The Women’s Health and Aging Study: Health and Social Characteristics of Older Women with Disability. NIH Publication No. 95-4009 ed., NIH Publication No 95-4009. Bethesda, MD: National Institute on Aging.
43. Folstein, MF, Folstein, SE & McHugh, PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12, 189198.
44. Willett, WC, Howe, GR & Kushi, LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65, 1220S1228S.
45. Twisk, JWR, de Vente, W, Apeldoorn, AT, et al. (2017) Should we use logistic mixed model analysis for the effect estimation in a longitudinal RCT with a dichotomous outcome variable? Epidemiol Biostat Public Health 14, e12613.
46. Willett, WC (1998) Issues in analysis and presentation of dietary data. In Nutritional Epidemiology, 2nd ed., pp. 321346 [WC Willett, editor]. New York, NY: Oxford University Press.
47. Jacka, FN, O’Neil, A, Opie, R, et al. (2017) A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med 15, 23.
48. Parletta, N, Zarnowiecki, D, Cho, J, et al. (2017) A Mediterranean-style dietary intervention supplemented with fish oil improves diet quality and mental health in people with depression: a randomized controlled trial (HELFIMED). Nutr Neurosci (epublication ahead of print version 7 December 2017).
49. Gangwisch, JE, Hale, L, Garcia, L, et al. (2015) High glycemic index diet as a risk factor for depression: analyses from the Women’s Health Initiative. Am J Clin Nutr 102, 454463.
50. Sánchez-Villegas, A, Delgado-Rodriguez, M, Alonso, A, et al. (2009) Association of the Mediterranean dietary pattern with the incidence of depression: the Seguimiento Universidad de Navarra/University of Navarra follow-up (SUN) cohort. Arch Gen Psychiatry 66, 10901098.
51. Akbaraly, TN, Sabia, S, Shipley, MJ, et al. (2013) Adherence to healthy dietary guidelines and future depressive symptoms: evidence for sex differentials in the Whitehall II study. Am J Clin Nutr 97, 419427.
52. Tsai, AC, Chang, T-L & Chi, S-H (2012) Frequent consumption of vegetables predicts lower risk of depression in older Taiwanese – results of a prospective population-based study. Public Health Nutr 15, 10871092.
53. Pasco, JA, Williams, LJ, Brennan-Olsen, SL, et al. (2015) Milk consumption and the risk for incident major depressive disorder. Psychother Psychosom 84, 384386.
54. Perez-Cornago, A, Sanchez-Villegas, A, Bes-Rastrollo, M, et al. (2016) Intake of high-fat yogurt, but not of low-fat yogurt or prebiotics, is related to lower risk of depression in women of the SUN cohort study. J Nutr 146, 17311739.
55. Djernes, JK (2006) Prevalence and predictors of depression in populations of elderly: a review. Acta Psychiatr Scand 113, 372387.
56. Vink, D, Aartsen, MJ & Schoevers, RA (2008) Risk factors for anxiety and depression in the elderly: a review. J Affect Dis 106, 2944.
57. Lopresti, AL, Hood, SD & Drummond, PD (2013) A review of lifestyle factors that contribute to important pathways associated with major depression: diet, sleep and exercise. J Affect Dis 148, 1227.
58. Rahe, C, Baune, BT, Unrath, M, et al. (2015) Associations between depression subtypes, depression severity and diet quality: cross-sectional findings from the BiDirect Study. BMC Psychiatry 15, 38.
59. Singh, M (2014) Mood, food, and obesity. Front Psychol 5, 925.
60. American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders, 5th ed. Washington, DC.
61. Penninx, B, Milaneschi, Y, Lamers, F, et al. (2013) Understanding the somatic consequences of depression: biological mechanisms and the role of depression symptom profile. BMC Med 11, 129.
62. Donini, LM, Savina, C & Cannella, C (2003) Eating habits and appetite control in the elderly: the anorexia of aging. Int Psychogeriatr 15, 7387.
63. Davison, KM & Kaplan, BJ (2012) Food intake and blood cholesterol levels of community-based adults with mood disorders. BMC Psychiatry 12, 10.
64. Grosso, G, Galvano, F, Marventano, S, et al. (2014) Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxid Med Cell Longev 2014, 313570.
65. Gibson, EL (2006) Emotional influences on food choice: sensory, physiological and psychological pathways. Physiol Behav 89, 5361.
66. McNeill, G, Winter, J & Jia, X (2009) Diet and cognitive function in later life: a challenge for nutrition epidemiology. Eur J Clin Nutr 63, S33S37.
67. Shahar, DR, Yu, B, Houston, DK, et al. (2010) Misreporting of energy intake in the elderly using doubly labeled water to measure total energy expenditure and weight change. J Am Coll Nutr 29, 1424.


Type Description Title
Supplementary materials

Elstgeest et al. supplementary material
Elstgeest et al. supplementary material 1

 Word (22 KB)
22 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed