Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T01:01:30.589Z Has data issue: false hasContentIssue false

Association between ultra-processed foods consumption and risk of non-alcoholic fatty liver disease: a population-based analysis of NHANES 2011–2018

Published online by Cambridge University Press:  16 December 2022

Zhening Liu
Affiliation:
Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, People’s Republic of China
Hangkai Huang
Affiliation:
Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, People’s Republic of China
Yan Zeng
Affiliation:
Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, People’s Republic of China
Yishu Chen
Affiliation:
Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, People’s Republic of China
Chengfu Xu*
Affiliation:
Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, People’s Republic of China
*
*Corresponding author: Chengfu Xu, email xiaofu@zju.edu.cn

Abstract

An increasing number of studies have evaluated the association between ultra-processed foods (UPF) consumption and metabolic disorders. However, the association between UPF intake and non-alcoholic fatty liver disease (NAFLD) remains unclear. In this study, we analysed data from 6545 participants who were recruited in National Health and Nutrition Examination Surveys 2011–2018. UPF were defined in light of the NOVA food classification system and divided into quartiles based on its proportion of total weight intake. Complex logistic regression models were used to assess the association between UPF and NAFLD. Mediation analyses were conducted to reveal underlying mediators. We found that NAFLD patients consumed more UPF than controls (925·92 ± 18·08 v. 812·70 ± 14·32 g/d, P < 0·001). Dietary intake of UPF (% weight) was negatively related to the Healthy Eating Index-2015 score (Spearman r = −0·32, P < 0·001). In the multivariable model, the highest quartile compared with the lowest, the OR (95 % CI) were 1·83 (1·33, 2·53) for NAFLD (OR per 10 % increment: 1·15; 95 % CI: 1·09, 1·22; P for trend < 0·001) and 1·52 (1·12, 2·07) for insulin resistance (OR per 10 % increment: 1·11; 95 % CI: 1·05, 1·18; P for trend = 0·002). Mediation analyses revealed that poor diet quality, high saturated fat and refined grain intake partly mediated the association between UPF and NAFLD. In conclusion, high UPF intake was associated with an increased risk of NAFLD in US adults. Further prospective studies are needed to verify these findings.

Type
Research Article
Copyright
© Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Younossi, Z, Anstee, QM, Marietti, M, et al. (2018) Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 15, 1120.CrossRefGoogle ScholarPubMed
Yki-Järvinen, H (2014) Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2, 901910.CrossRefGoogle Scholar
Watt, MJ, Miotto, PM, De Nardo, W, et al. (2019) The liver as an endocrine organ-linking NAFLD and insulin resistance. Endocr Rev 40, 13671393.Google ScholarPubMed
Younossi, ZM, Blissett, D, Blissett, R, et al. (2016) The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 64, 15771586.Google ScholarPubMed
Riazi, K, Raman, M, Taylor, L, et al. (2019) Dietary patterns and components in Nonalcoholic Fatty Liver Disease (NAFLD): what key messages can health care providers offer? Nutrients 11, 2878.CrossRefGoogle ScholarPubMed
Oddy, WH, Herbison, CE, Jacoby, P, et al. (2013) The western dietary pattern is prospectively associated with nonalcoholic fatty liver disease in adolescence. Am J Gastroenterol 108, 778785.Google ScholarPubMed
EASL-EASD-EASO (2016) Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 64, 13881402.CrossRefGoogle Scholar
Monteiro, CA, Cannon, G, Moubarac, JC, et al. (2018) The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr 21, 517.CrossRefGoogle ScholarPubMed
Elizabeth, L, Machado, P, Zinocker, M, et al. (2020) Ultra-processed foods and health outcomes: a narrative review. Nutrients 12, 1955.CrossRefGoogle ScholarPubMed
Monteiro, CA, Moubarac, JC, Cannon, G, et al. (2013) Ultra-processed products are becoming dominant in the global food system. Obes Rev 14, 2128.CrossRefGoogle ScholarPubMed
Monteiro, C, Cannon, G, Levy, R, et al. (2016) The star shines bright. Position paper 2. World Nutr 7, 2838.Google Scholar
Moradi, S, Entezari, MH, Mohammadi, H, et al. (2021) Ultra-processed food consumption and adult obesity risk: a systematic review and dose-response meta-analysis. Crit Rev Food Sci Nutr 63, 249260.CrossRefGoogle Scholar
Srour, B, Fezeu, LK, Kesse-Guyot, E, et al. (2020) Ultraprocessed food consumption and risk of type 2 diabetes among participants of the NutriNet-Santé prospective cohort. JAMA Intern Med 180, 283291.CrossRefGoogle ScholarPubMed
Mendonça, RD, Lopes, AC, Pimenta, AM, et al. (2017) Ultra-processed food consumption and the incidence of hypertension in a Mediterranean cohort: the Seguimiento Universidad de Navarra Project. Am J Hypertens 30, 358366.Google Scholar
Srour, B, Fezeu, LK, Kesse-Guyot, E, et al. (2019) Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ 365, l1451.CrossRefGoogle ScholarPubMed
Chen, X, Chu, J, Hu, W, et al. (2022) Associations of ultra-processed food consumption with cardiovascular disease and all-cause mortality: UK Biobank. Eur J Public Health 32, 779785.CrossRefGoogle ScholarPubMed
Pagliai, G, Dinu, M, Madarena, MP, et al. (2021) Consumption of ultra-processed foods and health status: a systematic review and meta-analysis. Br J Nutr 125, 308318.CrossRefGoogle ScholarPubMed
Leffa, PS, Hoffman, DJ, Rauber, F, et al. (2020) Longitudinal associations between ultra-processed foods and blood lipids in childhood. Br J Nutr 124, 341348.Google ScholarPubMed
Costa, CS, Rauber, F, Leffa, PS, et al. (2019) Ultra-processed food consumption and its effects on anthropometric and glucose profile: a longitudinal study during childhood. Nutr Metab Cardiovasc Dis 29, 177184.CrossRefGoogle ScholarPubMed
Konieczna, J, Fiol, M, Colom, A, et al. (2022) Does consumption of ultra-processed foods matter for liver health? Prospective analysis among older adults with metabolic syndrome. Nutrients 14, 4142.CrossRefGoogle ScholarPubMed
Ahluwalia, N, Dwyer, J, Terry, A, et al. (2016) Update on NHANES dietary data: focus on collection, release, analytical considerations, and uses to inform public policy. Adv Nutr 7, 121134.CrossRefGoogle ScholarPubMed
Juul, F, Martinez-Steele, E, Parekh, N, et al. (2018) Ultra-processed food consumption and excess weight among US adults. Br J Nutr 120, 90100.CrossRefGoogle ScholarPubMed
Martinez Steele, E, Baraldi, LG, Louzada, ML, et al. (2016) Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open 6, e009892.CrossRefGoogle ScholarPubMed
EGRP/DCCPS/NCI/NIH (2018) SAS Code. https://epi.grants.cancer.gov/hei/sas-code.html (accessed March 2021).Google Scholar
Ruhl, CE & Everhart, JE (2015) Fatty liver indices in the multiethnic United States National Health and Nutrition Examination Survey. Aliment Pharmacol Ther 41, 6576.CrossRefGoogle ScholarPubMed
Harvard T.H. (2012) Chan School of Public Health %mediate | Donna Spiegelman. https://www.hsph.harvard.edu/donna-spiegelman/software/mediate/ (accessed March 2021).Google Scholar
Reedy, J, Lerman, JL, Krebs-Smith, SM, et al. (2018) Evaluation of the Healthy Eating Index-2015. J Acad Nutr Diet 118, 16221633.CrossRefGoogle ScholarPubMed
Fardet, A (2016) Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: a preliminary study with 98 ready-to-eat foods. Food Funct 7, 23382346.CrossRefGoogle ScholarPubMed
DiFeliceantonio, AG, Coppin, G, Rigoux, L, et al. (2018) Supra-additive effects of combining fat and carbohydrate on food reward. Cell Metab 28, 3344.e3.CrossRefGoogle ScholarPubMed
Hall, KD, Ayuketah, A, Brychta, R, et al. (2019) Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab 30, 6777.e3.CrossRefGoogle ScholarPubMed
Hill, JO, Wyatt, HR & Peters, JC (2012) Energy balance and obesity. Circulation 126, 126132.Google ScholarPubMed
Azaïs-Braesco, V, Sluik, D, Maillot, M, et al. (2017) A review of total & added sugar intakes and dietary sources in Europe. Nutr J 16, 6.CrossRefGoogle ScholarPubMed
Jensen, T, Abdelmalek, MF, Sullivan, S, et al. (2018) Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol 68, 10631075.Google Scholar
Softic, S, Stanhope, KL, Boucher, J, et al. (2020) Fructose and hepatic insulin resistance. Crit Rev Clin Lab Sci 57, 308322.CrossRefGoogle ScholarPubMed
Softic, S, Cohen, DE & Kahn, CR (2016) Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci 61, 12821293.CrossRefGoogle ScholarPubMed
Cho, YE, Kim, DK, Seo, W, et al. (2019) Fructose promotes leaky gut, endotoxemia, and liver fibrosis through ethanol-inducible cytochrome P450–2E1-Mediated oxidative and nitrative stress. Hepatology 73, 21802195.Google ScholarPubMed
Luukkonen, PK, Sädevirta, S, Zhou, Y, et al. (2018) Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care 41, 17321739.CrossRefGoogle ScholarPubMed
Scorletti, E & Byrne, CD (2013) n-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu Rev Nutr 33, 231248.CrossRefGoogle ScholarPubMed
Vessby, B, Uusitupa, M, Hermansen, K, et al. (2001) Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU study. Diabetologia 44, 312319.CrossRefGoogle ScholarPubMed
Scorletti, E & Byrne, CD (2018) n-3 fatty acids and non-alcoholic fatty liver disease: evidence of efficacy and mechanism of action. Mol Aspects Med 64, 135146.Google ScholarPubMed
Birlouez-Aragon, I, Saavedra, G, Tessier, FJ, et al. (2010) A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. Am J Clin Nutr 91, 12201226.Google ScholarPubMed
ALjahdali, N & Carbonero, F (2019) Impact of Maillard reaction products on nutrition and health: current knowledge and need to understand their fate in the human digestive system. Crit Rev Food Sci Nutr 59, 474487.Google ScholarPubMed
Kellow, NJ & Coughlan, MT (2015) Effect of diet-derived advanced glycation end products on inflammation. Nutr Rev 73, 737759.CrossRefGoogle ScholarPubMed
Hyogo, H, Yamagishi, S-I, Iwamoto, K, et al. (2007) Elevated levels of serum advanced glycation end products in patients with non-alcoholic steatohepatitis. J Gastroenterol Hepatol 22, 11121119.Google ScholarPubMed
Tan, KCB, Shiu, SWM, Wong, Y, et al. (2011) Serum advanced glycation end products (AGEs) are associated with insulin resistance. Diabetes Metab Res Rev 27, 488492.Google ScholarPubMed
Liu, Z, Wang, J, Chen, S, et al. (2021) Associations of acrylamide with non-alcoholic fatty liver disease in American adults: a nationwide cross-sectional study. Environ Health 20, 98.CrossRefGoogle ScholarPubMed
Chassaing, B, Koren, O, Goodrich, JK, et al. (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 9296.Google ScholarPubMed
Kim, D, Yoo, ER, Li, AA, et al. (2019) Elevated urinary bisphenol A levels are associated with non-alcoholic fatty liver disease among adults in the United States. Liver Int 39, 13351342.Google ScholarPubMed
Romero-Gomez, M, Zelber-Sagi, S & Trenell, M (2017) Treatment of NAFLD with diet, physical activity and exercise. J Hepatol 67, 829846.CrossRefGoogle ScholarPubMed
Eslamparast, T, Tandon, P & Raman, M (2017) Dietary composition independent of weight loss in the management of non-alcoholic fatty liver disease. Nutrients 9, 800.Google ScholarPubMed
Naska, A & Trichopoulou, A (2014) Back to the future: the Mediterranean diet paradigm. Nutr Metab Cardiovasc Dis 24, 216219.CrossRefGoogle Scholar
Zelber-Sagi, S, Salomone, F & Mlynarsky, L (2017) The Mediterranean dietary pattern as the diet of choice for non-alcoholic fatty liver disease: evidence and plausible mechanisms. Liver Int 37, 936949.Google ScholarPubMed
Kontogianni, MD, Tileli, N, Margariti, A, et al. (2014) Adherence to the Mediterranean diet is associated with the severity of non-alcoholic fatty liver disease. Clin Nutr 33, 678683.CrossRefGoogle Scholar
Martinez Steele, E, Popkin, BM, Swinburn, B, et al. (2017) The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study. Popul Health Metr 15, 6.CrossRefGoogle ScholarPubMed
Petrus, RR, do Amaral Sobral, PJ, Tadini, CC, et al. (2021) The NOVA classification system: a critical perspective in food science. Trends Food Sci Technol 116, 603608.CrossRefGoogle Scholar