Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T23:59:46.467Z Has data issue: false hasContentIssue false

The association between dairy products consumption and prostate cancer risk: a systematic review and meta-analysis

Published online by Cambridge University Press:  10 August 2022

Zifan Zhao
Affiliation:
Nanshan School, Guangzhou Medical University, Guangzhou 510180, People’s Republic of China
Donghong Wu
Affiliation:
Nanshan School, Guangzhou Medical University, Guangzhou 510180, People’s Republic of China
Sirui Gao
Affiliation:
Nanshan School, Guangzhou Medical University, Guangzhou 510180, People’s Republic of China
Dongda Zhou
Affiliation:
Nanshan School, Guangzhou Medical University, Guangzhou 510180, People’s Republic of China
Xiaoying Zeng
Affiliation:
Nanshan School, Guangzhou Medical University, Guangzhou 510180, People’s Republic of China
Yuxuan Yao
Affiliation:
Nanshan School, Guangzhou Medical University, Guangzhou 510180, People’s Republic of China
Yilin Xu
Affiliation:
Nanshan School, Guangzhou Medical University, Guangzhou 510180, People’s Republic of China
Guohua Zeng*
Affiliation:
Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, People’s Republic of China
*
* Corresponding author: Dr G. Zeng, email 2008690094@gzhmu.edu.cn

Abstract

In this study, we conducted a meta-analysis to estimate the relationship between the consumption of dairy products and the risk of prostate cancer. We searched PubMed, Embase and Cochrane databases for relevant articles and identified a total of thirty-three cohort studies between 1989 and 2020. The qualities of included studies were assessed using Newcastle–Ottawa scale. Pooled adjusted relative risks (RR) with 95 % CI were calculated. We performed subgroup analyses stratified by dairy type, prostate cancer type, follow-up years, treatment era, collection times, adjustment for confounders and geographic location. In the subgroup analysis stratified by prostate cancer type, the pooled RR were 0·98 (95 % CI 0·94, 1·03) in the advanced group, 1·10 (95 % CI 0·98, 1·24) in the non-advanced group and 0·92 (95 % CI 0·84, 1·00) in the fatal group. In the dose–response analysis, a positive association for the risk of prostate cancer was observed for total dairy products 400 g/d (RR: 1·02; 95 % CI 1·00, 1·03), total milk 200 g/d (RR: 1·02; 95 % CI 1·01, 1·03), cheese 40 g/d (RR: 1·01; 95 % CI 1·00, 1·03) and butter 50 g/d (RR: 1·03; 95 % CI 1·01, 1·05). A decreased risk was observed for the intake of whole milk 100 g/d (RR: 0·97; 95 % CI 0·96, 0·99). Our meta-analysis suggests that high intakes of dairy products may be associated with an increased risk of prostate cancer; however, since many of the studies were affected by prostate-specific antigen (PSA) screening bias, additional studies with an adjustment of PSA screening are needed.

Type
Systematic Review and Meta-Analysis
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rawla, P (2019) Epidemiology of prostate cancer. World J Oncol 10, 6389.CrossRefGoogle ScholarPubMed
Global Cancer Observatory: Cancer Tomorrow (2020Lyon: International Agency for Research on Cancer.https://gco.iarc.fr/today. (accessed August 2022).Google Scholar
Deloumeaux, J, Bhakkan, B, Eyraud, R, et al. (2017) Prostate cancer clinical presentation, incidence, mortality and survival in Guadeloupe over the period 2008–2013 from a population-based cancer registry. Cancer Causes Control 28, 12651273.CrossRefGoogle ScholarPubMed
Pernar, CH, Ebot, EM, Wilson, KM, et al. (2018) The epidemiology of prostate cancer. Cold Spring Harb Perspect Med 8, a030361.CrossRefGoogle ScholarPubMed
Hsing, AW, Tsao, L & Devesa, SS (2000) International trends and patterns of prostate cancer incidence and mortality. Int J Cancer 85, 6067.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Lee, J, Demissie, K, Lu, SE, et al. (2007) Cancer incidence among Korean-American immigrants in the United States and native Koreans in South Korea. Cancer Control 14, 7885.CrossRefGoogle ScholarPubMed
Chu, LW, Ritchey, J, Devesa, SS, et al. (2011) Prostate cancer incidence rates in Africa. Prostate Cancer 2011, 947870.CrossRefGoogle ScholarPubMed
Ballon-Landa, E & Parsons, JK (2018) Nutrition, physical activity, and lifestyle factors in prostate cancer prevention. Curr Opin Urol 28, 5561.CrossRefGoogle ScholarPubMed
Bruinsma, J (2003) World Agriculture: Towards 2015/2030: An FAO Perspective. London: Earthscan Publications.Google Scholar
Grasgruber, P, Hrazdira, E, Sebera, M, et al. (2018) Cancer incidence in Europe: an ecological analysis of nutritional and other environmental factors. Front Oncol 8, 151.CrossRefGoogle ScholarPubMed
Zhang, J & Kesteloot, H (2005) Milk consumption in relation to incidence of prostate, breast, colon, and rectal cancers: is there an independent effect? Nutr Cancer 53, 6572.CrossRefGoogle ScholarPubMed
Grant, WB (1999) An ecologic study of dietary links to prostate cancer. Altern Med Rev 4, 162169.Google ScholarPubMed
Thacker, SB (1988) Meta-analysis. A quantitative approach to research integration. JAMA 259, 16851689.CrossRefGoogle ScholarPubMed
Gao, X, LaValley, MP & Tucker, KL (2005) Prospective studies of dairy product and calcium intakes and prostate cancer risk: a meta-analysis. J Natl Cancer Inst 97, 17681777.CrossRefGoogle ScholarPubMed
Qin, LQ, Xu, JY, Wang, PY, et al. (2007) Milk consumption is a risk factor for prostate cancer in Western countries: evidence from cohort studies. Asia Pac J Clin Nutr 16, 467476.Google ScholarPubMed
Huncharek, M, Muscat, J & Kupelnick, B (2008) Dairy products, dietary calcium and vitamin D intake as risk factors for prostate cancer: a meta-analysis of 26,769 cases from 45 observational studies. Nutr Cancer 60, 421441.CrossRefGoogle ScholarPubMed
Aune, D, Navarro Rosenblatt, DA, Chan, DS, et al. (2015) Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am J Clin Nutr 101, 87117.CrossRefGoogle Scholar
World Cancer Research Fund & American Institute for Cancer Research Continuous Update Project Expert Report 2018. (2018) Diet, Physical Activity and Prostate Cancer. www.wcrf.org/dietandcancer/about (accessed January 2022).Google Scholar
Preble, I, Zhang, Z, Kopp, R, et al. (2019) Dairy product consumption and prostate cancer risk in the United States. Nutrients 11, 1615.CrossRefGoogle ScholarPubMed
Lan, T, Park, Y, Colditz, GA, et al. (2020) Adolescent dairy product and calcium intake in relation to later prostate cancer risk and mortality in the NIH-AARP diet and health study. Cancer Causes Control 31, 891904.CrossRefGoogle ScholarPubMed
Nilsson, LM, Winkvist, A, Esberg, A, et al. (2020) Dairy products and cancer risk in a northern Sweden population. Nutr Cancer 72, 409420.CrossRefGoogle Scholar
Papadimitriou, N, Muller, D, van den Brandt, PA, et al. (2020) A nutrient-wide association study for risk of prostate cancer in the European prospective investigation into cancer and nutrition and the Netherlands cohort study. Eur J Nutr 59, 29292937.Google ScholarPubMed
Stang, A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25, 603605.CrossRefGoogle ScholarPubMed
Higgins, JP, Thompson, SG, Deeks, JJ, et al. (2003) Measuring inconsistency in meta-analyses. BMJ 327, 557560.CrossRefGoogle ScholarPubMed
Xu, C & Doi, SAR (2018) The robust error meta-regression method for dose-response meta-analysis. Int J Evid Based Healthc 16, 138144.CrossRefGoogle ScholarPubMed
US Department of Agriculture & Agricultural Research Service Nutrient Data Laboratory Home Page. (2019) USDA National Nutrient Database for Standard Reference. http://www.ars.usda.gov/ba/bhnrc/ndl (accessed January 2022).Google Scholar
Mills, PK, Beeson, WL, Phillips, RL, et al. (1989) Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer 64, 598604.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Severson, RK, Nomura, AM, Grove, JS, et al. (1989) A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii. Cancer Res 49, 18571860.Google ScholarPubMed
Thompson, MM, Garland, C, Barrett-Connor, E, et al. (1989) Heart disease risk factors, diabetes, and prostatic cancer in an adult community. Am J Epidemiol 129, 511517.CrossRefGoogle Scholar
Hsing, AW, McLaughlin, JK, Schuman, LM, et al. (1990) Diet, tobacco use, and fatal prostate cancer: results from the Lutheran brotherhood cohort study. Cancer Res 50, 68366840.Google ScholarPubMed
Le Marchand, L, Kolonel, LN, Wilkens, LR, et al. (1994) Animal fat consumption and prostate cancer: a prospective study in Hawaii. Epidemiology 5, 276282.CrossRefGoogle ScholarPubMed
Veierød, MB, Laake, P & Thelle, DS (1997) Dietary fat intake and risk of prostate cancer: a prospective study of 25,708 Norwegian men. Int J Cancer 73, 634638.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Schuurman, AG, van den Brandt, PA, Dorant, E, et al. (1999) Animal products, calcium and protein and prostate cancer risk in the Netherlands cohort study. Br J Cancer 80, 11071113.Google ScholarPubMed
Chan, JM, Pietinen, P, Virtanen, M, et al. (2000) Diet and prostate cancer risk in a cohort of smokers, with a specific focus on calcium and phosphorus (Finland). Cancer Causes Control 11, 859867.CrossRefGoogle Scholar
Chan, JM, Stampfer, MJ, Ma, J, et al. (2001) Dairy products, calcium, and prostate cancer risk in the Physicians’ health study. Am J Clin Nutr 74, 549554.CrossRefGoogle ScholarPubMed
Michaud, DS, Augustsson, K, Rimm, EB, et al. (2001) A prospective study on intake of animal products and risk of prostate cancer. Cancer Causes Control 12, 557567.CrossRefGoogle ScholarPubMed
Berndt, SI, Carter, HB, Landis, PK, et al. (2002) Calcium intake and prostate cancer risk in a long-term aging study: the Baltimore longitudinal study of aging. Urology 60, 11181123.CrossRefGoogle Scholar
Rodriguez, C, McCullough, ML, Mondul, AM, et al. (2003) Calcium, dairy products, and risk of prostate cancer in a prospective cohort of United States men. Cancer Epidemiol Prev Biomarkers 12, 597603.Google Scholar
Allen, NE, Sauvaget, C, Roddam, AW, et al. (2004) A prospective study of diet and prostate cancer in Japanese men. Cancer Causes Control 15, 911920.CrossRefGoogle ScholarPubMed
Tseng, M, Breslow, RA, Graubard, BI, et al. (2005) Dairy, calcium, and vitamin D intakes and prostate cancer risk in the national health and nutrition examination epidemiologic follow-up study cohort. Am J Clin Nutr 81, 11471154.CrossRefGoogle ScholarPubMed
Giovannucci, E, Liu, Y, Stampfer, MJ, et al. (2006) A prospective study of calcium intake and incident and fatal prostate cancer. Cancer Epidemiol Prev Biomarkers 15, 203210.Google ScholarPubMed
Koh, K, Sesso, H, Paffenbarger, R, et al. (2006) Dairy products, calcium and prostate cancer risk. Br J Cancer 95, 15821585.Google ScholarPubMed
Tande, AJ, Platz, EA & Folsom, AR (2006) The metabolic syndrome is associated with reduced risk of prostate cancer. Am J Epidemiol 164, 10941102.Google ScholarPubMed
Ahn, J, Albanes, D, Peters, U, et al. (2007) Dairy products, calcium intake, and risk of prostate cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Prev Biomarkers 16, 26232630.CrossRefGoogle ScholarPubMed
Kesse, E, Bertrais, S, Astorg, P et al. (2007) Dairy products, calcium and phosphorus intake, and the risk of prostate cancer: results of the French prospective SU.VI.MAX (Supplémentation en vitamines et minéraux antioxydants) study. Br J Nutr 95, 539545.CrossRefGoogle Scholar
Mitrou, PN, Albanes, D, Weinstein, SJ, et al. (2007) A prospective study of dietary calcium, dairy products and prostate cancer risk (Finland). Int J Cancer 120, 24662473.CrossRefGoogle ScholarPubMed
Neuhouser, ML, Barnett, MJ, Kristal, AR, et al. (2007) (n-6) PUFA increase and dairy foods decrease prostate cancer risk in heavy smokers. J Nutr 137, 18211827.CrossRefGoogle ScholarPubMed
Park, S-Y, Murphy, SP, Wilkens, LR, et al. (2007) Calcium, vitamin D, and dairy product intake and prostate cancer risk: the multiethnic cohort study. Am J Epidemiol 166, 12591269.CrossRefGoogle ScholarPubMed
Rohrmann, S, Platz, EA, Kavanaugh, CJ, et al. (2007) Meat and dairy consumption and subsequent risk of prostate cancer in a US cohort study. Cancer Causes Control 18, 4150.CrossRefGoogle Scholar
Van Der Pols, JC, Bain, C, Gunnell, D, et al. (2007) Childhood dairy intake and adult cancer risk: 65-year follow-up of the Boyd Orr cohort. Am J Clin Nutr 86, 17221729.CrossRefGoogle Scholar
Allen, N, Key, T, Appleby, P, et al. (2008) Animal foods, protein, calcium and prostate cancer risk: the European prospective investigation into cancer and nutrition. Br J Cancer 98, 15741581.CrossRefGoogle ScholarPubMed
Kurahashi, N, Inoue, M, Iwasaki, M, et al. (2008) Dairy product, saturated fatty acid, and calcium intake and prostate cancer in a prospective cohort of Japanese men. Cancer Epidemiol Prev Biomarkers 17, 930937.CrossRefGoogle Scholar
Park, Y, Leitzmann, MF, Subar, AF, et al. (2009) Dairy food, calcium, and risk of cancer in the NIH-AARP diet and health study. Arch Intern Med 169, 391401.CrossRefGoogle ScholarPubMed
Song, Y, Chavarro, JE, Cao, Y, et al. (2013) Whole milk intake is associated with prostate cancer-specific mortality among US male physicians. J Nutr 143, 189196.CrossRefGoogle ScholarPubMed
Rohrmann, S & Van Hemelrijck, M (2015) The association of milk and dairy consumption and calcium intake with the risk and severity of prostate cancer. Curr Nutr Rep 4, 6671.CrossRefGoogle Scholar
Park, Y, Mitrou, PN, Kipnis, V, et al. (2007) Calcium, dairy foods, and risk of incident and fatal prostate cancer: the NIH-AARP diet and health study. Am J Epidemiol 166, 12701279.Google ScholarPubMed
Catalona, WJ, Smith, DS, Ratliff, TL, et al. (1991) Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med 324, 11561161.CrossRefGoogle ScholarPubMed
Heaney, RP, McCarron, DA, Dawson-Hughes, B, et al. (1999) Dietary changes favorably affect bone remodeling in older adults. J Am Diet Assoc 99, 12281233.Google ScholarPubMed
Ma, J, Giovannucci, E, Pollak, M, et al. (2001) Milk intake, circulating levels of insulin-like growth factor-I, and risk of colorectal cancer in men. J Natl Cancer Inst 93, 13301336.CrossRefGoogle ScholarPubMed
Gunnell, D, Oliver, S, Peters, T, et al. (2003) Are diet–prostate cancer associations mediated by the IGF axis? A cross-sectional analysis of diet, IGF-1 and IGFBP-3 in healthy middle-aged men. Br J Cancer 88, 16821686.CrossRefGoogle Scholar
Qin, L-Q, He, K & Xu, J-Y (2009) Milk consumption and circulating insulin-like growth factor-I level: a systematic literature review. Int J Food Sci Nutr 60, 330340.CrossRefGoogle ScholarPubMed
Gennigens, C, Menetrier-Caux, C & Droz, J (2006) Insulin-like growth factor (IGF) family and prostate cancer. Crit Rev Oncol Hematol 58, 124145.Google ScholarPubMed
Ryan, CJ, Haqq, CM, Simko, J, et al. (2007) Expression of insulin-like growth factor-1 receptor in local and metastatic prostate cancer. Urol Oncol 25, 134140.CrossRefGoogle ScholarPubMed
Cohen, P, Peehl, DM, Lamson, G, et al. (1991) Insulin-Like growth factors (IGFs), IGF receptors, and IGF-binding proteins in primary cultures of prostate epithelial cells. J Clin Endocrinol Metab 73, 401407.CrossRefGoogle ScholarPubMed
Key, TJ (2014) Nutrition, hormones and prostate cancer risk: results from the European prospective investigation into cancer and nutrition. Recent Results Cancer Res 202, 3946.CrossRefGoogle ScholarPubMed
Watts, EL, Fensom, GK, Smith Byrne, K, et al. (2021) Circulating insulin-like growth factor-I, total and free testosterone concentrations and prostate cancer risk in 200 000 men in UK Biobank. Int J Cancer 148, 22742288 CrossRefGoogle Scholar
Travis, RC, Appleby, PN, Martin, RM, et al. (2016) A meta-analysis of individual participant data reveals an association between circulating levels of IGF-I and prostate cancer risk. Cancer Res 76, 22882300.CrossRefGoogle ScholarPubMed
Stikbakke, E, Richardsen, E, Knutsen, T, et al. (2020) Inflammatory serum markers and risk and severity of prostate cancer: the PROCA-life study. Int J Cancer 147, 8492.CrossRefGoogle ScholarPubMed
Arthur, R, Williams, R, Garmo, H, et al. (2018) Serum inflammatory markers in relation to prostate cancer severity and death in the Swedish AMORIS study. Int J Cancer 142, 22542262.CrossRefGoogle ScholarPubMed
Toriola, AT, Laukkanen, JA, Kurl, S, et al. (2013) Prediagnostic circulating markers of inflammation and risk of prostate cancer. Int J Cancer 133, 29612967.Google Scholar
Shi, N, Olivo-Marston, S, Jin, Q, et al. (2021) Associations of dairy intake with circulating biomarkers of inflammation, insulin response, and dyslipidemia among postmenopausal women. J Acad Nutr Diet 121, 19842002.CrossRefGoogle Scholar
Fu, BC, Tabung, FK, Pernar, CH, et al. (2021) Insulinemic and inflammatory dietary patterns and risk of prostate cancer. Eur Urol 79, 405412.CrossRefGoogle ScholarPubMed
Malekinejad, H & Rezabakhsh, A (2015) Hormones in dairy foods and their impact on public health – a narrative review article. Iran J Public Health 44, 742.Google ScholarPubMed
Hartmann, S, Lacorn, M & Steinhart, H (1998) Natural occurrence of steroid hormones in food. Food Chem 62, 720.CrossRefGoogle Scholar
Maruyama, K, Oshima, T & Ohyama, K (2010) Exposure to exogenous estrogen through intake of commercial milk produced from pregnant cows. Pediatr Int 52, 3338.CrossRefGoogle ScholarPubMed
Barrett-Connor, E, Garland, C, McPhillips, JB, et al. (1990) A prospective, population-based study of androstenedione, estrogens, and prostatic cancer. Cancer Res 50, 169173.Google ScholarPubMed
Bosland, MC (2000) Chapter 2: the role of steroid hormones in prostate carcinogenesis. JNCI Monogr 2000, 3966.CrossRefGoogle Scholar
Modugno, F, Weissfeld, JL, Trump, DL, et al. (2001) Allelic variants of aromatase and the androgen and estrogen receptors: toward a multigenic model of prostate cancer risk. Clin Cancer Res 7, 30923096.Google Scholar
Nelles, JL, Hu, W-Y & Prins, GS (2011) Estrogen action and prostate cancer. Expert Rev Endocrinol Metab 6, 437451.CrossRefGoogle ScholarPubMed
Wilson, KM, Shui, IM, Mucci, LA, et al. (2015) Calcium and phosphorus intake and prostate cancer risk: a 24-year follow-up study. Am J Clin Nutr 101, 173183.CrossRefGoogle Scholar
Trump, DL & Aragon-Ching, JB (2018) Vitamin D in prostate cancer. Asian J Androl 20, 244.CrossRefGoogle ScholarPubMed
Giovannucci, E, Liu, Y, Platz, EA, et al. (2007) Risk factors for prostate cancer incidence and progression in the health professionals follow-up study. Int J Cancer 121, 15711578.CrossRefGoogle ScholarPubMed
Rohrmann, S, Platz, EA, Kavanaugh, CJ, et al. (2007) Meat and dairy consumption and subsequent risk of prostate cancer in a US cohort study. Cancer Causes Control 18, 4150.CrossRefGoogle Scholar
Freedland, S & Aronson, W (2005) Obesity and prostate cancer. Urology 65, 433439.CrossRefGoogle ScholarPubMed
Hiatt, RA, Armstrong, MA, Klatsky, AL et al. (1994) Alcohol consumption, smoking, and other risk factors and prostate cancer in a large health plan cohort in California (United States). Cancer Causes Control 5, 6672.CrossRefGoogle Scholar
Etzioni, R, Penson, DF, Legler, JM, et al. (2002) Overdiagnosis due to prostate-specific antigen screening: lessons from US prostate cancer incidence trends. J Natl Cancer Inst 94, 981990.CrossRefGoogle ScholarPubMed
Allen, NE, Key, TJ, Appleby, PN, et al. (2008) Animal foods, protein, calcium and prostate cancer risk: the European prospective investigation into cancer and nutrition. Br J Cancer 98, 15741581.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Zhao et al. supplementary material

Figures S1-S8

Download Zhao et al. supplementary material(PDF)
PDF 275.5 KB