Skip to main content Accessibility help
×
Home

Assessing nutritional quality as a ‘vital sign’ of cardiometabolic health

  • Dorothée Buteau-Poulin (a1) (a2), Paul Poirier (a1) (a3), Jean-Pierre Després (a1) (a2) (a4) and Natalie Alméras (a1) (a2)

Abstract

High overall nutritional quality (NQ) is an important component of ideal cardiovascular health, a concept introduced in 2010 by the American Heart Association. However, data on the independent contribution of overall NQ to the variation in the cardiometabolic risk (CMR) profile are limited. This observational study aimed to investigate the association between overall NQ and the CMR profile in 4785 participants (65⋅4 % of men, age 43⋅3 (sd 10⋅8) years) who underwent a cardiometabolic health evaluation, including lifestyle habits, anthropometric measurements, blood pressure, lipid profile and HbA1c concentrations. In addition, a submaximal exercise test was conducted to assess cardiorespiratory fitness (CRF). Using a standardised NQ questionnaire (twenty-five items food-based questionnaire), participants were classified into three subgroups: (1) low, (2) moderate or (3) high NQ and variance and multiple linear regression analyses were performed. Results showed that less than 15 % of participants presented a high NQ. A high NQ was associated with a healthier lifestyle habits and a more favourable CMR profile (lower values of waist circumference and cholesterol:HDL-cholesterol ratio, lower concentrations of non-HDL-cholesterol, TAG and HbA1c). Some of these associations were independent of age, physical activity level (PAL) and CRF. A better NQ was also associated with a lower proportion of participants presenting the hypertriacylglycerolaemic waist phenotype independently of both PAL and CRF. The present study suggests that overall NQ can be assessed with a short food-based questionnaire and should be considered in clinical practice as a new ‘vital sign’ associated with other health behaviours and cardiometabolic health.

Copyright

Corresponding author

*Corresponding author: Natalie Alméras, email natalie.almeras@criucpq.ulaval.ca

References

Hide All
1.Benjamin, EJ, Blaha, MJ, Chiuve, SE, et al. (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135, e146e603.
2.Strasser, T (1978) Reflections on cardiovascular diseases. Interdiscip Sci Rev 3, 225230.
3.Lloyd-Jones, DM, Hong, Y, Labarthe, D, et al. (2010) Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic impact goal through 2020 and beyond. Circulation 121, 586613.
4.Folsom, AR, Yatsuya, H, Nettleton, JA, et al. (2011) Community prevalence of ideal cardiovascular health, by the American Heart Association definition, and relationship with cardiovascular disease incidence. J Am Coll Cardiol 57, 16901696.
5.Yang, Q, Cogswell, ME, Flanders, WD, et al. (2012) Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among US adults. JAMA 307, 12731283.
6.Younus, A, Aneni, EC, Spatz, ES, et al. (2016) A systematic review of the prevalence and outcomes of ideal cardiovascular health in US and non-US populations. Mayo Clin Proc 91, 649670.
7.Eckel, RH, Jakicic, JM, Ard, JD, et al. (2014) 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63, 29602984.
8.Dietary Guidelines Advisory Committee (2015) Scientific Report of the 2015 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Washingon, DC: U.S. Department of Agriculture, Agricultural Research Service.
9.Alkerwi, A (2014) Diet quality concept. Nutrition 30, 613618.
10.Waijers, PM, Feskens, EJ & Ocke, MC (2007) A critical review of predefined diet quality scores. Br J Nutr 97, 219231.
11.Wirt, A & Collins, CE (2009) Diet quality: what is it and does it matter? Public Health Nutr 12, 24732492.
12.Mozaffarian, D, Appel, LJ & Van Horn, L (2011) Components of a cardioprotective diet: new insights. Circulation 123, 28702891.
13.Micha, R, Penalvo, JL, Cudhea, F, et al. (2017) Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. JAMA 317, 912924.
14.Mozaffarian, D (2016) Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 133, 187225.
15.Sala-Vila, A, Estruch, R & Ros, E (2015) New insights into the role of nutrition in CVD prevention. Curr Cardiol Rep 17, 26.
16.Estruch, R, Martinez-Gonzalez, MA, Corella, D, et al. (2006) Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med 145, 111.
17.Rumawas, ME, Meigs, JB, Dwyer, JT, et al. (2009) Mediterranean-style dietary pattern, reduced risk of metabolic syndrome traits, and incidence in the Framingham Offspring Cohort. Am J Clin Nutr 90, 16081614.
18.Gunther, AL, Liese, AD, Bell, RA, et al. (2009) Association between the dietary approaches to stop hypertension diet and hypertension in youth with diabetes mellitus. Hypertension 53, 612.
19.Després, JP & Lemieux, I (2006) Abdominal obesity and metabolic syndrome. Nature 444, 881887.
20.Lévesque, V, Vallières, M, Poirier, P, et al. (2015) Targeting abdominal adiposity and cardiorespiratory fitness in the workplace. Med Sci Sports Exerc 47, 13421350.
21.Bailey, RL, Miller, PE, Mitchell, DC, et al. (2009) Dietary screening tool identifies nutritional risk in older adults. Am J Clin Nutr 90, 177183.
22.Rumawas, ME, Dwyer, JT, McKeown, NM, et al. (2009) The development of the Mediterranean-style dietary pattern score and its application to the American diet in the Framingham Offspring Cohort. J Nutr 139, 11501156.
23.Khaw, KT, Jakes, R, Bingham, S, et al. (2006) Work and leisure time physical activity assessed using a simple, pragmatic, validated questionnaire and incident cardiovascular disease and all-cause mortality in men and women: The European Prospective Investigation into Cancer in Norfolk prospective population study. Int J Epidemiol 35, 10341043.
24.Gordon, CC, Chumlea, WC & Roche, AF (1988) Stature, recumbent length, and weight. In Anthropometric Standardization Reference Manual, pp. 38 [Lohman, TG, Roche, AF, Martorell, R, editors]. Champaign, IL: Human Kinetics Books.
25.National Heart Lung and Blood Institute (1998) Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report. Obes Res 6, Suppl. 2, 51S209S.
26.Abadie, JM & Koelsch, AA (2008) Performance of the Roche second generation hemoglobin A1c immunoassay in the presence of HB-S or HB-C traits. Ann Clin Lab Sci 38, 3136.
27.American College of Sports and Medicine (2017) ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed. Philadelphia, PA: Wolters Kluwers/Lippincott Williams & Wilkins.
28.Astrand, PO & Ryhming, I (1954) A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work. J Appl Physiol 7, 218221.
29.Lemieux, I, Pascot, A, Couillard, C, et al. (2000) Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation 102, 179184.
30.Arsenault, BJ, Lemieux, I, Després, JP, et al. (2010) The hypertriglyceridemic-waist phenotype and the risk of coronary artery disease: results from the EPIC-Norfolk prospective population study. CMAJ 182, 14271432.
31.Wilson, PW, D’Agostino, RB, Levy, D, et al. (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97, 18371847.
32.D’Agostino, RB Sr., Vasan, RS, Pencina, MJ, et al. (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117, 743753.
33.American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37, Suppl. 1, S81S90.
34.Alessa, HB, Malik, VS, Yuan, C, et al. (2017) Dietary patterns and cardiometabolic and endocrine plasma biomarkers in US women. Am J Clin Nutr 105, 432441.
35.Phillips, CM, Harrington, JM & Perry, IJ (2019) Relationship between dietary quality, determined by DASH score, and cardiometabolic health biomarkers: a cross-sectional analysis in adults. Clin Nutr 38, 16201628.
36.Saraf-Bank, S, Haghighatdoost, F, Esmaillzadeh, A, et al. (2017) Adherence to Healthy Eating Index-2010 is inversely associated with metabolic syndrome and its features among Iranian adult women. Eur J Clin Nutr 71, 425430.
37.Monfort-Pires, M, Salvador, EP, Folchetti, LD, et al. (2014) Diet quality is associated with leisure-time physical activity in individuals at cardiometabolic risk. J Am Coll Nutr 33, 297305.
38.Alkerwi, A, Baydarlioglu, B, Sauvageot, N, et al. (2017) Smoking status is inversely associated with overall diet quality: findings from the ORISCAV-LUX study. Clin Nutr 36, 12751282.
39.Hebert, JR (2016) Social desirability trait: biaser or driver of self-reported dietary intake? J Acad Nutr Diet 116, 18951898.
40.Mozaffarian, D, Hao, T, Rimm, EB, et al. (2011) Changes in diet and lifestyle and long-term weight gain in women and men. N Eng J Med 364, 23922404.
41.Estruch, R, Ros, E, Salas-Salvado, J, et al. (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Eng J Med 368, 12791290.
42.Appel, LJ, Sacks, FM, Carey, VJ, et al. (2005) Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA 294, 24552464.
43.Gadgil, MD, Appel, LJ, Yeung, E, et al. (2013) The effects of carbohydrate, unsaturated fat, and protein intake on measures of insulin sensitivity: results from the OmniHeart trial. Diabetes Care 36, 11321137.
44.Charreire, H, Kesse-Guyot, E, Bertrais, S, et al. (2011) Associations between dietary patterns, physical activity (leisure-time and occupational) and television viewing in middle-aged French adults. Br J Nutr 105, 902910.
45.Cuenca-Garcia, M, Artero, EG, Sui, X, et al. (2014) Dietary indices, cardiovascular risk factors and mortality in middle-aged adults: findings from the Aerobics Center Longitudinal Study. Ann Epidemiol 24, 297303.e2.
46.Mora, S, Cook, N, Buring, JE, et al. (2007) Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation 116, 21102118.
47.Alves, AJ, Viana, JL, Cavalcante, SL, et al. (2016) Physical activity in primary and secondary prevention of cardiovascular disease: overview updated. World J Cardiol 8, 575583.
48.Shah, RV, Murthy, VL, Allison, MA, et al. (2016) Diet and adipose tissue distributions: the multi-ethnic study of atherosclerosis. Nutr Metab Cardiovasc Dis 26, 185193.
49.Fischer, K, Pick, JA, Moewes, D, et al. (2015) Qualitative aspects of diet affecting visceral and subcutaneous abdominal adipose tissue: a systematic review of observational and controlled intervention studies. Nutr Rev 73, 191215.
50.Tchernof, A & Després, JP (2013) Pathophysiology of human visceral obesity: an update. Physiol Rev 93, 359404.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed