Skip to main content Accessibility help
×
Home

Anti-proliferative activity and chemoprotective effects towards DNA oxidative damage of fresh and cooked Brassicaceae

  • Lisa Ferrarini (a1), Nicoletta Pellegrini (a2), Teresa Mazzeo (a2), Cristiana Miglio (a2) (a3), Serena Galati (a1), Francesco Milano (a1), Carlo Rossi (a1) and Annamaria Buschini (a1)...

Abstract

Epidemiological evidence shows that regular consumption of Brassicaceae is associated with a reduced risk of cancer and heart disease. Cruciferous species are usually processed before eating and the real impact of cooking practices on their bioactive properties is not fully understood. We have evaluated the effect of common cooking practices (boiling, microwaving, and steaming) on the biological activities of broccoli, cauliflower and Brussels sprouts. Anti-proliferative and chemoprotective effects towards DNA oxidative damage of fresh and cooked vegetable extracts were evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and Comet assays on HT-29 human colon carcinoma cells. The fresh vegetable extracts showed the highest anti-proliferative and antioxidant activities on HT-29 cells (broccoli>cauliflower = Brussels sprouts). No genotoxic activity was detected in any of the samples tested. The cooking methods that were applied influenced the anti-proliferative activity of Brassica extracts but did not alter considerably the antioxidant activity presented by the raw vegetables. Raw, microwaved, boiled (except broccoli) and steamed vegetable extracts, at different concentrations, presented a protective antioxidative action comparable with vitamin C (1 mm). These data provide new insight into the influence of domestic treatment on the quality of food, which could support the recent epidemiological studies suggesting that consumption of cruciferous vegetables, mainly cooked, may be related to a reduced risk of developing cancer.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Anti-proliferative activity and chemoprotective effects towards DNA oxidative damage of fresh and cooked Brassicaceae
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Anti-proliferative activity and chemoprotective effects towards DNA oxidative damage of fresh and cooked Brassicaceae
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Anti-proliferative activity and chemoprotective effects towards DNA oxidative damage of fresh and cooked Brassicaceae
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor A. Buschini, fax +39 0521 905604, email annamaria.buschini@unipr.it

References

Hide All
1Mukherjee, S, Gangopadhyay, H & Das, DK (2008) Broccoli: a unique vegetable that protects mammalian hearts through the redox cycling of the thioredoxin superfamily. J Agric Food Chem 56, 609617.
2Kim, MK & Park, JH (2009) Conference on “Multidisciplinary approaches to nutritional problems”. Symposium on “Nutrition and health”. Cruciferous vegetable intake and the risk of human cancer: epidemiological evidence. Proc Nutr Soc 68, 103110.
3Lynn, A, Collins, A, Fuller, Z, et al. (2006) Cruciferous vegetables and colo-rectal cancer. Proc Nutr Soc 65, 135144.
4Turkmen, N, Sari, F & Velioglu, YS (2005) The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem 93, 713718.
5Podsedek, A, Sosnowska, D, Redzynia, M, et al. (2006) Antioxidant capacity and content of Brassica oleracea dietary antioxidants. Int J Food Sci Technol 41, 4958.
6Podsedek, A (2007) Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT-Food Sci Technol 40, 111.
7Higdon, JV, Delage, B, Williams, DE, et al. (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55, 224236.
8Vallejo, F, Tomás-Barberán, FA & García-Viguera, C (2002) Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. Eur Food Res Technol 215, 310316.
9Song, LJ & Thornalley, PJ (2007) Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem Toxicol 45, 216224.
10Surh, YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3, 768780.
11Berger, MM (2005) Can oxidative damage be treated nutritionally? Clin Nutr 24, 172183.
12Nicoli, MC, Anese, M & Parpinel, M (1999) Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci Technol 10, 94100.
13Lee, SK & Kader, AA (2000) Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharv Biol Technol 20, 207220.
14Ou, B, Huang, D, Hampsch-Woodill, M, et al. (2002) Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity ORAC and ferric reducing antioxidant power FRAP assays. A comparative study. J Agric Food Chem 50, 31223128.
15Bernhardt, S & Schlich, E (2006) Impact of different cooking methods on food quality: retention of lipophilic vitamins in fresh and frozen vegetables. J Food Eng 77, 327333.
16Miglio, C, Chiavaro, E, Visconti, A, et al. (2008) Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J Agric Food Chem 56, 139147.
17Link, LB & Potter, JD (2004) Raw versus cooked vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev 13, 14221435.
18Dewanto, V, Wu, X, Adom, KK, et al. (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50, 30103014.
19Bugianesi, R, Salucci, M, Leonardi, C, et al. (2004) Effect of domestic cooking on human bioavailability of naringenin, chlorogenic acid, lycopene and β-carotene in cherry tomatoes. Eur J Nutr 43, 360366.
20Lo Scalzo, R, Fibiani, M, Mennella, G, et al. (2010) Thermal treatment of eggplant (Solanum melongena L.) increases the antioxidant content and the inhibitory effect on human neutrophil burst. J Agric Food Chem 58, 33713379.
21Heo, BG, Chon, SU, Park, YJ, et al. (2009) Antiproliferative activity of Korean wild vegetables on different human tumor cell lines. Plant Foods Hum Nutr 64, 257263.
22Sharif, T, Auger, C, Alhosin, M, et al. (2010) Red wine polyphenols cause growth inhibition and apoptosis in acute lymphoblastic leukaemia cells by inducing a redox-sensitive up-regulation of p73 and down-regulation of UHRF1. Eur J Cancer 46, 983994.
23Cemeli, E, Baumgartner, A & Anderson, D (2009) Antioxidants and the Comet assay. Mutat Res 681, 5167.
24Wasson, GR, McKelvey-Martin, VJ & Downes, CS (2008) The use of the comet assay in the study of human nutrition and cancer. Mutagenesis 23, 153162.
25Wong, VWC, Szeto, YT, Collins, AR, et al. (2005) The Comet assay: a biomonitoring tool for nutraceutical research. Curr Topics Nutraceutical Res 3, 114.
26Riso, P, Martini, D, Visioli, F, et al. (2009) Effect of broccoli intake on markers related to oxidative stress and cancer risk in healthy smokers and nonsmokers. Nutr Cancer 61, 232237.
27Pellegrini, N, Chiavaro, E, Gardana, C, et al. (2010) Effect of different cooking methods on color, phytochemical concentration and antioxidant capacity of raw and frozen Brassica vegetables. J Agric Food Chem 58, 43104321.
28Laky, B, Knasmüller, S, Gminski, R, et al. (2002) Protective effects of Brussels sprouts towards B[a]p-induced DNA damage: a model study with the single-cell gel electrophoresis (SCGE)/Hep G2 assay. Food Chem Toxicol 40, 10771083.
29Kassie, F, Laky, B, Gminski, R, et al. (2003) Effects of garden and water cress juices and their constituents, benzyl and phenethyl isothiocyanates, towards benzo(a)pyrene-induced DNA damage: a model study with the single cell gel electrophoresis/Hep G2 assay. Chem Biol Interact 142, 285296.
30Chan, AC (1993) Partners in defense, vitamin E and vitamin C. Can J Physiol Pharmacol 71, 725731.
31Knutson, KM, Marth, EH & Wagner, MK (1987) Microwave heating of food. Lebensm-Wiss Technol 20, 101110.
32Keum, Y-S, Jeong, W-S, Kong, AN, et al. (2004) Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat Res 555, 191202.
33Juge, N, Mithen, RF & Traka, M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64, 11051127.
34Rungapamestry, V, Duncan, AJ, Fuller, Z, et al. (2007) Effect of cooking Brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. Proc Nutr Soc 66, 6981.
35Dekker, M, Verkerk, R & Jongen, WMF (2000) Predictive modelling of health aspects in the food production chain: a case study on glucosinolates in cabbage. Trends Food Sci Technol 11, 174181.
36Verkerk, R & Dekker, M (2004) Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatments. J Agric Food Chem 52, 73187323.
37Kassie, F, Parzefall, W, Musk, S, et al. (1996) Genotoxic effects of crude juices from Brassica vegetables and juices and extracts from phytopharmaceutical preparations and spices of cruciferous plants origin in bacterial and mammalian cells. Chem Biol Interact 102, 116.
38Heres-Pulido, ME, Dueñas-García, I, Castañeda-Partida, L, et al. (2010) Genotoxicity studies of organically grown broccoli (Brassica oleracea var. italica) and its interactions with urethane, methyl methanesulfonate and 4-nitroquinoline-1-oxide genotoxicity in the wing spot test of Drosophila melanogaster. Food Chem Toxicol 48, 120128.
39Boivin, D, Lamy, S, Lord-Dufour, S, et al. (2009) Antiproliferative and antioxidant activities of common vegetables: a comparative study. Food Chem 112, 374380.

Keywords

Anti-proliferative activity and chemoprotective effects towards DNA oxidative damage of fresh and cooked Brassicaceae

  • Lisa Ferrarini (a1), Nicoletta Pellegrini (a2), Teresa Mazzeo (a2), Cristiana Miglio (a2) (a3), Serena Galati (a1), Francesco Milano (a1), Carlo Rossi (a1) and Annamaria Buschini (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed