Skip to main content Accessibility help
×
Home

An acute intake of plant stanol esters alters immune-related pathways in the jejunum of healthy volunteers

  • Els De Smet (a1), Ronald P. Mensink (a1), Mark V. Boekschoten (a2), Rogier de Ridder (a3), Wilfred T. V. Germeraad (a4), Tim G. A. M. Wolfs (a5) and Jogchum Plat (a1)...

Abstract

Plant sterols and stanols inhibit intestinal cholesterol absorption and consequently lower serum LDL-cholesterol (LDL-C) concentrations. The underlying mechanisms are not yet known. In vitro and animal studies have suggested that changes in intestinal sterol metabolism are attributed to the LDL-C-lowering effects of plant stanol esters. However, similar studies in human subjects are lacking. Therefore, we examined the effects of an acute intake of plant stanol esters on gene expression profiles of the upper small intestine in healthy volunteers. In a double-blind cross-over design, fourteen healthy subjects (eight female and six male; age 21–55 years), with a BMI ranging from 21 to 29 kg/m2, received in random order a shake with or without plant stanol esters (4 g). At 5 h after consumption of the shake, biopsies were taken from the duodenum (around the papilla of Vater) and from the jejunum (20 cm distal from the papilla of Vater). Microarray analysis showed that the expression profiles of genes involved in sterol metabolism were not altered. Surprisingly, the pathways involved in T-cell functions were down-regulated in the jejunum. Furthermore, immunohistochemical analysis showed that the number of CD3 (cluster of differentiation number 3), CD4 (cluster of differentiation number 4) and Foxp3+ (forkhead box P3-positive) cells was reduced in the plant stanol ester condition compared with the control condition, which is in line with the microarray data. The physiological and functional consequences of the plant stanol ester-induced reduction of intestinal T-cell-based immune activity in healthy subjects deserve further investigation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An acute intake of plant stanol esters alters immune-related pathways in the jejunum of healthy volunteers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      An acute intake of plant stanol esters alters immune-related pathways in the jejunum of healthy volunteers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      An acute intake of plant stanol esters alters immune-related pathways in the jejunum of healthy volunteers
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr J. Plat, fax +31 433670976, email j.plat@maastrichtuniversity.nl

References

Hide All
1 Ling, WH & Jones, PJ (1995) Dietary phytosterols: a review of metabolism, benefits and side effects. Life Sci 57, 195206.
2 Racette, SB, Lin, X, Lefevre, M, et al. (2010) Dose effects of dietary phytosterols on cholesterol metabolism: a controlled feeding study. Am J Clin Nutr 91, 3238.
3 Plat, J, Mackay, D, Baumgartner, S, et al. (2012) Progress and prospective of plant sterol and plant stanol research: report of the Maastricht meeting. Atherosclerosis 225, 521533.
4 De Smet, E, Mensink, RP & Plat, J (2012) Effects of plant sterols and stanols on intestinal cholesterol metabolism: suggested mechanisms from past to present. Mol Nutr Food Res 56, 10581072.
5 Lee, IA, Kim, EJ & Kim, DH (2012) Inhibitory effect of β-sitosterol on TNBS-induced colitis in mice. Planta Med 78, 896898.
6 Baskar, AA, Ignacimuthu, S, Paulraj, GM, et al. (2010) Chemopreventive potential of β-sitosterol in experimental colon cancer model – an in vitro and in vivo study. BMC Complement Altern Med 10, 24.
7 Brufau, G, Kuipers, F, Lin, Y, et al. (2011) A reappraisal of the mechanism by which plant sterols promote neutral sterol loss in mice. PLoS ONE 6, e21576.
8 Field, FJ, Born, E & Mathur, SN (1997) Effect of micellar β-sitosterol on cholesterol metabolism in CaCo-2 cells. J Lipid Res 38, 348360.
9 Plat, J & Mensink, RP (2002) Increased intestinal ABCA1 expression contributes to the decrease in cholesterol absorption after plant stanol consumption. FASEB J 16, 12481253.
10 Brüll, F, Mensink, RP, Steinbusch, MF, et al. (2012) Beneficial effects of sitostanol on the attenuated immune function in asthma patients: results of an in vitro approach. PLOS ONE 7, e46895.
11 Gylling, H, Puska, P, Vartiainen, E, et al. (1999) Serum sterols during stanol ester feeding in a mildly hypercholesterolemic population. J Lipid Res 40, 593600.
12 Mensink, RP, Ebbing, S, Lindhout, M, et al. (2002) Effects of plant stanol esters supplied in low-fat yoghurt on serum lipids and lipoproteins, non-cholesterol sterols and fat soluble antioxidant concentrations. Atherosclerosis 160, 205213.
13 Wolfs, TG, Buurman, WA, Zoer, B, et al. (2009) Endotoxin induced chorioamnionitis prevents intestinal development during gestation in fetal sheep. PLoS ONE 4, e5837.
14 Chen, Q, Gruber, H, Pakenham, C, et al. (2009) Dietary phytosterols and phytostanols alter the expression of sterol-regulatory genes in SHRSP and WKY inbred rats. Ann Nutr Metab 55, 341350.
15 Scoggan, KA, Gruber, H, Chen, Q, et al. (2009) Increased incorporation of dietary plant sterols and cholesterol correlates with decreased expression of hepatic and intestinal Abcg5 and Abcg8 in diabetic BB rats. J Nutr Biochem 20, 177186.
16 Tachibana, S, Hirano, M, Hirata, T, et al. (2007) Cholesterol and plant sterol efflux from cultured intestinal epithelial cells is mediated by ATP-binding cassette transporters. Biosci Biotechnol Biochem 71, 18861895.
17 Plat, J, Bragt, MC & Mensink, RP (2005) Common sequence variations in ABCG8 are related to plant sterol metabolism in healthy volunteers. J Lipid Res 46, 6875.
18 Dieter, MZ, Maher, JM, Cheng, X, et al. (2004) Expression and regulation of the sterol half-transporter genes ABCG5 and ABCG8 in rats. Comp Biochem Physiol C Toxicol Pharmacol 139, 209218.
19 Kang, CK & Lee, TH (2014) Medaka villin 1-like protein (VILL) is associated with the formation of microvilli induced by decreasing salinities in the absorptive ionocytes. Front Zool 11, 2.
20 Igel, M, Giesa, U, Lutjohann, D, et al. (2003) Comparison of the intestinal uptake of cholesterol, plant sterols, and stanols in mice. J Lipid Res 44, 533538.
21 Repa, JJ, Berge, KE, Pomajzl, C, et al. (2002) Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors α and β. J Biol Chem 277, 1879318800.
22 Davis, HR Jr, Zhu, LJ, Hoos, LM, et al. (2004) Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 279, 3358633592.
23 Repa, JJ, Dietschy, JM & Turley, SD (2002) Inhibition of cholesterol absorption by SCH 58053 in the mouse is not mediated via changes in the expression of mRNA for ABCA1, ABCG5, or ABCG8 in the enterocyte. J Lipid Res 43, 18641874.
24 Sanders, TA, Filippou, A, Berry, SE, et al. (2011) Palmitic acid in the sn-2 position of triacylglycerols acutely influences postprandial lipid metabolism. Am J Clin Nutr 94, 14331441.
25 Kaneko, E, Matsuda, M, Yamada, Y, et al. (2003) Induction of intestinal ATP-binding cassette transporters by a phytosterol-derived liver X receptor agonist. J Biol Chem 278, 3609136098.
26 Lally, S, Tan, CY, Owens, D, et al. (2006) Messenger RNA levels of genes involved in dysregulation of postprandial lipoproteins in type 2 diabetes: the role of Niemann-Pick C1-like 1, ATP-binding cassette, transporters G5 and G8, and of microsomal triglyceride transfer protein. Diabetologia 49, 10081016.
27 Phillips, C, Mullan, K, Owens, D, et al. (2006) Intestinal microsomal triglyceride transfer protein in type 2 diabetic and non-diabetic subjects: the relationship to triglyceride-rich postprandial lipoprotein composition. Atherosclerosis 187, 5764.
28 Calpe-Berdiel, L, Escola-Gil, JC, Benitez, S, et al. (2007) Dietary phytosterols modulate T-helper immune response but do not induce apparent anti-inflammatory effects in a mouse model of acute, aseptic inflammation. Life Sci 80, 19511956.
29 Mosmann, TR & Coffman, RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7, 145173.
30 Koboziev, I, Reinoso Webb, C, Furr, KL, et al. (2013) Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radic Biol Med 68, 122133.
31 Martinez, I, Perdicaro, DJ, Brown, AW, et al. (2013) Diet-induced alterations of host cholesterol metabolism are likely to affect the gut microbiota composition in hamsters. Appl Environ Microbiol 79, 516524.
32 Bensinger, SJ, Bradley, MN, Joseph, SB, et al. (2008) LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97111.
33 Glass, CK & Saijo, K (2008) Immunology: oxysterols hold T cells in check. Nature 455, 4041.
34 Brull, F, Mensink, RP, van den Hurk, K, et al. (2010) TLR2 activation is essential to induce a Th1 shift in human peripheral blood mononuclear cells by plant stanols and plant sterols. J Biol Chem 285, 29512958.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

De Smet supplementary material
Table S1

 Word (420 KB)
420 KB
WORD
Supplementary materials

De Smet supplementary material
Table S2

 Word (68 KB)
68 KB

An acute intake of plant stanol esters alters immune-related pathways in the jejunum of healthy volunteers

  • Els De Smet (a1), Ronald P. Mensink (a1), Mark V. Boekschoten (a2), Rogier de Ridder (a3), Wilfred T. V. Germeraad (a4), Tim G. A. M. Wolfs (a5) and Jogchum Plat (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.