Skip to main content Accessibility help
×
Home

Adding a reward increases the reinforcing value of fruit

  • Nathalie De Cock (a1), Leentje Vervoort (a2), Patrick Kolsteren (a1), Lieven Huybregts (a3), Wendy Van Lippevelde (a4), Jolien Vangeel (a5), Melissa Notebaert (a5), Kathleen Beullens (a5) (a6), Lien Goossens (a2), Lea Maes (a3), Benedicte Deforche (a4) (a7), Caroline Braet (a2), Steven Eggermont (a5), John Van Camp (a1) and Carl Lachat (a1)...

Abstract

Adolescents’ snack choices could be altered by increasing the reinforcing value (RV) of healthy snacks compared with unhealthy snacks. This study assessed whether the RV of fruit increased by linking it to a reward and if this increased RV was comparable with the RV of unhealthy snacks alone. Moderation effects of sex, hunger, BMI z-scores and sensitivity to reward were also explored. The RV of snacks was assessed in a sample of 165 adolescents (15·1 (sd 1·5) years, 39·4 % boys and 17·4 % overweight) using a computerised food reinforcement task. Adolescents obtained points for snacks through mouse clicks (responses) following progressive ratio schedules of increasing response requirements. Participants were (computer) randomised to three experimental groups (1:1:1): fruit (n 53), fruit+reward (n 60) or unhealthy snacks (n 69). The RV was evaluated as total number of responses and breakpoint (schedule of terminating food reinforcement task). Multilevel regression analyses (total number of responses) and Cox’s proportional hazard regression models (breakpoint) were used. The total number of responses made were not different between fruit+reward and fruit (b −473; 95 % CI −1152, 205, P=0·17) or unhealthy snacks (b410; 95 % CI −222, 1043, P=0·20). The breakpoint was slightly higher for fruit than fruit+reward (HR 1·34; 95 % CI 1·00, 1·79, P=0·050), whereas no difference between unhealthy snacks and fruit+reward (HR 0·86; 95 % CI 0·62, 1·18, P=0·34) was observed. No indication of moderation was found. Offering rewards slightly increases the RV of fruit and may be a promising strategy to increase healthy food choices. Future studies should however, explore if other rewards, could reach larger effect sizes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Adding a reward increases the reinforcing value of fruit
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Adding a reward increases the reinforcing value of fruit
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Adding a reward increases the reinforcing value of fruit
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: N. De Cock, email nathaliel.decock@ugent.be

References

Hide All
1. Moreno, LA & Rodriguez, G (2007) Dietary risk factors for development of childhood obesity. Curr Opin Clin Nutr Metab Care 10, 336341.
2. Sebastian, RS, Cleveland, LE & Goldman, JD (2008) Effect of snacking frequency on adolescents’ dietary intakes and meeting national recommendations. J Adolesc Health 42, 503511.
3. Temple, JL (2014) Factors that influence the reinforcing value of foods and beverages. Physiol Behav 136, 97103.
4. Epstein, LH, Leddy, JJ, Temple, JL, et al. (2007) Food reinforcement and eating: a multilevel analysis. Psychol Bull 133, 884906.
5. Giesen, JC, Havermans, RC, Douven, A, et al. (2010) Will work for snack food: the association of BMI and snack reinforcement. Obesity (Silver Spring) 18, 966970.
6. Epstein, LH, Yokum, S, Feda, DM, et al. (2014) Food reinforcement and parental obesity predict future weight gain in non-obese adolescents. Appetite 82, 138142.
7. Epstein, LH, Carr, KA, Lin, H, et al. (2011) Food reinforcement, energy intake, and macronutrient choice. Am J Clin Nutr 94, 1218.
8. Temple, JL, Legierski, CM, Giacomelli, AM, et al. (2008) Overweight children find food more reinforcing and consume more energy than do nonoverweight children. Am J Clin Nutr 87, 11211127.
9. Giesen, JC, Havermans, RC & Jansen, A (2010) Substituting snacks with strawberries and Sudokus: does restraint matter? Health Psychol 29, 222226.
10. Goldfield, GS & Epstein, LH (2002) Can fruits and vegetables and activities substitute for snack foods? Health Psychol 21, 299303.
11. Epstein, LH & Leddy, JJ (2006) Food reinforcement. Appetite 46, 2225.
12. Smith, JA & Epstein, LH (1991) Behavioral economic-analysis of food choice in obese children. Appetite 17, 9195.
13. Cooke, LJ, Chambers, LC, Anez, EV, et al. (2011) Facilitating or undermining? The effect of reward on food acceptance. A narrative review. Appetite 57, 493497.
14. Wardle, J, Herrera, ML, Cooke, L, et al. (2003) Modifying children’s food preferences: the effects of exposure and reward on acceptance of an unfamiliar vegetable. Eur J Clin Nutr 57, 341348.
15. Vandeweghe, L, Verbeken, S, Moens, E, et al. (2016) Strategies to improve the willingness to taste: the moderating role of children’s reward sensitivity. Appetite 103, 344352.
16. Lowe, CF, Horne, PJ, Tapper, K, et al. (2004) Effects of a peer modelling and rewards-based intervention to increase fruit and vegetable consumption in children. Eur J Clin Nutr 58, 510522.
17. Cooke, LJ, Chambers, LC, Anez, EV, et al. (2011) Eating for pleasure or profit: the effect of incentives on children’s enjoyment f vegetables. Psychol Sci 22, 190196.
18. Hardin, MG & Ernst, M (2009) Functional brain imaging of development-related risk and vulnerability for substance use in adolescents. J Addict Med 3, 4754.
19. Galvan, A (2013) The teenage brain: sensitivity to rewards. Curr Dir Psychol Sci 22, 8893.
20. Temple, JL, Bulkley, AM, Briatico, L, et al. (2009) Sex differences in reinforcing value of caffeinated beverages in adolescents. Behav Pharmacol 20, 731741.
21. Clark, EN, Dewey, AM & Temple, JL (2010) Effects of daily snack food intake on food reinforcement depend on body mass index and energy density. Am J Clin Nutr 91, 300308.
22. Vervoort, L, Clauwaert, A, Vandeweghe, L, et al. (2016) Factors influencing the reinforcing value of fruit and unhealthy snacks. Eur J Nutr (epublication ahead of print version 25 August 2016).
23. Davis, C, Patte, K, Levitan, R, et al. (2007) From motivation to behaviour: a model of reward sensitivity, overeating, and food preferences in the risk profile for obesity. Appetite 48, 1219.
24. De Cock, N, Van Lippevelde, W, Vervoort, L, et al. (2015) Sensitivity to reward is associated with snack and sugar sweetened beverage consumption in adolescents. Eur J Nutr 55, 16231641.
25. De Decker, A, Sioen, I, Verbeken, S, et al. (2016) Associations of reward sensitivity with food consumption, activity pattern, and BMI in children. Appetite 100, 189196.
26. Gevers, DWM, Kremers, SPJ, de Vries, NK, et al. (2016) Intake of energy-dense snack foods and drinks among Dutch children aged 7–12 years: how many, how much, when, where and which? Public Health Nutr 19, 8392.
27. Reiss, S & Havercamp, S (1996) Sensitivity theory of motivation: implications for psychopathology. Behav Res Ther 34, 621632.
28. Cameron, J, Banko, KM & Pierce, WD (2001) Pervasive negative effects of rewards on intrinsic motivation: the myth continues. Behav Anal 24, 144.
29. Baranowski, T, Buday, R, Thompson, DI, et al. (2008) Playing for real – video games and stories for health-related behavior change. Am J Prev Med 34, 7482.
30. Dickey, MD (2005) Engaging by design: how engagement strategies in popular computer and video games can inform instructional design. Etr&D 53, 6783.
31. Muris, P, Meesters, C, Kanter, E, et al. (2005) Behavioural inhibition and behavioural activation system scales for children: relationships with Eysenck’s personality traits and psychopathological symptoms. Pers Indiv Differ 38, 831841.
32. Verbeken, S, Braet, C, Lammertyn, J, et al. (2012) How is reward sensitivity related to bodyweight in children? Appetite 58, 478483.
33. De Cock, N, Van Lippevelde, W, Vervoort, L, et al. (2016) Sensitivity to reward is associated with snack and sugar-sweetened beverage consumption in adolescents. Eur J Nutr 55, 16231632.
34. Voigt, DC, Dillard, JP, Braddock, KH, et al. (2009) Carver and White’s (1994) BIS/BAS scales and their relationship to risky health behaviours. Pers Individ Dif 47, 8993.
35. Muris, P, Meesters, C, De Kanter, E, et al. (2005) Behavioural inhibition and behavioural activation system scales for children: relationships with Eysenck’s personality traits and psychopathological symptoms. Pers Individ Dif 38, 103113.
36. Vervoort, L, Wolters, LH, Hogendoorn, SM, et al. (2010) Sensitivity of Gray’s Behavioral Inhibition System in clinically anxious and non-anxious children and adolescents. Pers Individ Dif 48, 629633.
37. Roelants, M, Hauspie, R & Hoppenbrouwers, K (2009) References for growth and pubertal development from birth to 21 years in Flanders, Belgium. Ann Hum Bio 36, 680694.
38. Roane, HS (2008) On the applied use of progressive-ratio schedules of reinforcement. J Appl Behav Anal 41, 155161.
39. Grambsch, PM & Therneau, TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81, 515526.
40. Bickel, WK, Marsch, LA & Carroll, ME (2000) Deconstructing relative reinforcing efficacy and situating the measures of pharmacological reinforcement with behavioral economics: a theoretical proposal. Psychopharmacology 153, 4456.
41. Bickel, WK & Madden, GJ (1999) A comparison of measures of relative reinforcing efficacy and behavioral economics: cigarettes and money in smokers. Behav Pharmacol 10, 627637.
42. Hosmer, DW, Lemeshow, S & May, S (2008) Model development. In Applied Survival Analysis: Regression Modeling of Time-to-Event Data, 2nd ed., pp. 132168. Hoboken, NJ: John Wiley and Sons, Inc.
43. Salvy, SJ, Coelho, JS, Kieffer, E, et al. (2007) Effects of social contexts on overweight and normal-weight children’s food intake. Physiol Behav 92, 840846.
44. Bedard, PL, Krzyzanowska, MK, Pintilie, M, et al. (2007) Statistical power of negative randomized controlled trials presented at American Society for Clinical Oncology annual meetings. J Clin Oncol 25, 34823487.
45. Lowe, CF, Horne, PJ, Hardman, CA, et al. (2006) A peer-modeling and rewards-based intervention is effective in increasing fruit and vegetable consumption in children. Prev Med 43, 351351.
46. Goldfield, GS, Lumb, AB & Colapinto, CK (2011) Relative reinforcing value of energy-dense snack foods in overweight and obese adults. Can J Diet Pract Res 72, 170174.
47. Walsh, EM & Kiviniemi, MT (2014) Changing how I feel about the food: experimentally manipulated affective associations with fruits change fruit choice behaviors. J Behav Med 37, 322331.
48. Jacques-Tiura, AJ & Greenwald, MK (2016) Behavioral economic factors related to pediatric obesity. Pediatr Clin North Am 63, 425446.
49. Huyghe, E & Van Kerckhove, A (2013) Can fat taxes and package size restrictions stimulate healthy food choices? Int J Res Marketing 30, 421423.
50. Epstein, LH, Lin, H, Carr, KA, et al. (2012) Food reinforcement and obesity. Psychological moderators. Appetite 58, 157162.
51. Epstein, LH, Temple, JL, Neaderhiser, BJ, et al. (2007) Food reinforcement, the dopamine D2 receptor genotype, and energy intake in obese and nonobese humans. Behav Neurosci 121, 877886.
52. Epstein, LH, Wright, SM, Paluch, RA, et al. (2004) Relation between food reinforcement and dopamine genotypes and its effect on food intake in smokers. Am J Clin Nutr 80, 8288.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed