Skip to main content Accessibility help
×
Home

Acute effects of meal fatty acids on postprandial NEFA, glucose and apo E response: implications for insulin sensitivity and lipoprotein regulation?

  • Kim G. Jackson (a1), Emma J. Wolstencroft (a1), Paul A. Bateman (a1), Parveen Yaqoob (a1) and Christine M. Williams (a1)...

Abstract

Our aim was to determine whether meal fatty acids influence insulin and glucose responses to mixed meals and whether these effects can be explained by variations in postprandial NEFA and Apo, which regulate the metabolism of triacylglycerol-rich lipoproteins (Apo C and E). A single-blind crossover study examined the effects of single meals enriched in saturated fatty acids SFA), n-6 PUFA and MUFA on plasma metabolite and insulin responses. The triacylglycerol response following the PUFA meal showed a lower net incremental area under the curve than following the SFA and MUFA meals (P<0·007). Compared with the SFA meal, the PUFA meal showed a lower net incremental area under the curve for the NEFA response from initial suppression to the end of the postprandial period (180–480 min; P<0·02), and both PUFA and MUFA showed a lower net incremental glucose response (P<0·02), although insulin concentrations were similar between meals. The pattern of the Apo E response was also different following the SFA meal (P<0·02). There was a significant association between the net incremental NEFA (180–480 min) and glucose response (rs=0·409, P=0·025), and in multiple regression analysis the NEFA response accounted for 24 % of the variation in glucose response. Meal SFA have adverse effects on the postprandial glucose response that may be due to greater elevations in NEFA arising from differences in the metabolism of SFA- v. PUFA- and MUFA-rich lipoproteins. Elevated Apo E responses to high-SFA meals may have important implications for the hepatic metabolism of triacylglycerol-rich lipoproteins.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Acute effects of meal fatty acids on postprandial NEFA, glucose and apo E response: implications for insulin sensitivity and lipoprotein regulation?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Acute effects of meal fatty acids on postprandial NEFA, glucose and apo E response: implications for insulin sensitivity and lipoprotein regulation?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Acute effects of meal fatty acids on postprandial NEFA, glucose and apo E response: implications for insulin sensitivity and lipoprotein regulation?
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Kim Jackson, fax +44 (0) 118 931 0080, email k.g.jackson@reading.ac.uk

References

Hide All
Batal, R, Tremblay, M, Barrett, PHR, Jacques, H, Fredenrich, A, Mamer, O, Davignon, J & Cohn, JS (2000) Plasma kinetics of apo C-III and apo E in normolipidaemic and hypertriglyceridaemic subject. J Lipid Res 41, 706718.
Beysen, C, Karpe, F, Fielding, A, Clark, A, Levy, JC & Frayn, KN (2002) Interaction between specific fatty acids, GLP-1 and insulin secretion in humans. Diabetologia 45, 15331541.
Blum, CB (1982) Dynamics of apolipoprotein E metabolism in humans. J Lipid Res 23, 13081316.
Brouwer, CB, de Bruin, TWA, Jansen, H & Erkelens, DW (1993) Different clearance of intravenously administered olive oil and soybean emulsion: role of hepatic lipase. Am J Clin Nutr 57, 533539.
Demacker, PNM, Reijnen, IGM, Katan, MB, Stuyt, PMJ & Stahlenhoef, AFH (1991) Increased removal of remnants of triglyceride-rich lipoproteins on a diet rich in polyunsaturated fatty acids. Eur J Clin Nutr 21, 197203.
Dresner, A, Laurent, D & Marcucci, M (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103, 253259.
Edelstein, C & Scanu, M (1986) Precautionary measures for collecting blood destined for lipoprotein isolation. Methods Enzymol 128, 151155.
Frayn, KN, Williams, CM & Arner, P (1996) Are increased plasma non-esterified fatty acid concentrations a risk marker for coronary heart disease and other chronic diseases?. Clin Sci 90, 243253.
Gannon, MC, Nuttal, FQ, Westphal, SA, Neil, BJ & Seaquist, ER (1989) Effects of dose of ingested glucose on plasma metabolite and hormone responses in type II diabetes subjects. Diabetes Care 12, 544552.
Gannon, MC, Nuttall, FQ, Westphal, SA & Seaquist, ER (1993) The effect of fat and carbohydrate on plasma glucose, insulin, c-peptide, and triglycerides in normal male subjects. J Am Coll Nutr 12, 3641.
Gatti, E, Noe, D, Pazzucconi, F, Gianfranceschi, G, Porrini, M, Testolin, G & Sirtori, CR (1992) Differential effect of unsaturated oils and butter on blood glucose and insulin response to carbohydrate in normal volunteers. Eur J Clin Nutr 46, 161166.
Grill, V & Qvidstad, E (2000) Fatty acids and insulin secretion. Br J Nutr 83, S79S84.
Hansen, PA, Han, DH, Marshall, BA, Nolte, LA, Chen, MM, Mueckler, M & Holloszy, JO (1998) A high fat diet impairs stimulation of glucose transport in muscle – functional evaluation of potential mechanisms. J Biol Chem 273, 2615726163.
Holland, BA, Welch, AA, Unwin, ID, Buss, DH, Paul, AA & Southgate, DAT (1991) McCance and Widdowson's the Composition of Foods 5th ed. Cambridge Royal Society of Chemistry and Agriculture, Fisheries and Food
Jackson, KG, Robertson, MD, Fielding, BA, Frayn, KN & Williams, CM (2002) Measurement of apolipoprotein B-48 in the Svedberg flotation rate (S f )>400, S f 60–400 and S f 20–60 lipoprotein fractions reveals novel findings with respect to the effects of dietary fatty acids on triglyceride-rich lipoproteins in postmenopausal women. Clin Sci 103, 227237.
Jackson, KG, Robertson, MD, Fielding, BA, Frayn, KN & Williams, CM (2002b) Olive oil increases the number of triacylglycerol-rich chylomicron particles compared with other oils: an effect retained when a second standard meal is fed. Am J Clin Nutr 76, 942949.
Jackson, KG, Wolstencroft, EJ, Bateman, PA, Yaqoob, P & Williams, CM (2005) Increased enrichment of triacylglycerol-rich lipoproteins with apolipoproteins E and C-III following saturated compared with unsaturated fatty acid-rich meals. Am J Clin Nutr 81, 2534.
Joannic, J-L, Auboiron, S, Raison, J, Basdevant, A, Bornet, F, Guy-Grand, B (1997) How the degree of unsaturation of dietary fatty acids influences the glucose and insulin responses to different carbohydrates in mixed meals. Am J Clin Nutr 65, 14271433.
Jong, MC, Hofker, MH & Havekas, LM (1999) Role of apoC in lipoprotein metabolism. Functional differences between apo C1, apo C2 and apo C3. Arterioscler Thromb Vasc Biol 19, 472484.
Kraegen, E, Cooney, G, Ye, J-M & Furler, S (2002) Peroxisome proliferator activated receptors, fatty acids and muscle insulin resistance. J Roy Soc Med 95, Suppl.1422.
Lovejoy, JC, Champagne, CM, Smith, SR, DeLany, JP, Bray, GA, Lefevre, M, Denkins, YM & Rood, JC (2001) Relationship of dietary fat and serum cholesterol ester and phospholipid fatty acids to markers of insulin resistance in men and women with a range of glucose tolerance. Metabolism 50, 8692.
Macintosh, CG, Holt, SHA, Brand-Miller, JC (2003) The degree of fat saturation does not alter glycemic, insulinemic or satiety responses to a starchy staple in healthy men. J Nutr 133, 25772580.
Matthews, DR (1988) Time series analysis in endocrinology. Acta Paediatr Scand 347, 5562.
Mekki, N, Charbonnier, M, Borel, P, Leonardi, J, Juhel, C, Portugal, H & Lairon, D (2002) Butter differs from olive oil and sunflower oil in its effects on postprandial lipemia and triacylglycerol-rich lipoproteins after single mixed meals in healthy young men. J Nutr 132, 36423649.
Mero, N, Syvanne, M, Rosseneu, M, Labeur, C, Hilden, H & Taskinen, M-R (1998) Comparison of three fatty meals in healthy normolipidaemic men: high post-prandial retinyl ester response to soybean oil. Eur J Clin Invest 28, 407415.
Oakes, ND, Bell, KS, Furler, SM, Camilleri, S, Saha, AK, Ruderman, NB, Chisolm, DJ & Kraegan, EW (1997) Diet induced muscle insulin resistance in rats is ameliorated by acute dietary lipid withdrawal or a single bout of exercise – parallel relationship between insulin stimulation of glucose uptake and suppression of long chain fatty acyl-CoA. Diabetes 46, 20222028.
Pedersen, A, Marckmann, P & Sanstrom, B (1999) Postprandial lipoprotein, glucose and insulin responses after two consecutive meals containing rapeseed oil, sunflower or palm oil with or without glucose at the first meal. Br J Nutr 82, 97104.
Petersen, KF & Shulman, GI (2002) Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am J Cardio 90 11G – 18G
Randle, PJ, Garland, PB, Hales, CN & Newsholme, EA (1963) The glucose fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet i, 785789.
Robertson, MD, Jackson, KG, Fielding, BA, Williams, CM & Frayn, KN (2002) Acute effects of meal fatty acid composition on insulin sensitivity in healthy post-menopausal women. Br J Nutr 88, 635640.
Roche, HM, Zampelas, A, Jackson, KG, Williams, CM & Gibney, MJ (1998) The effect of test meal monounsaturated fatty acid: saturated fatty acid ration on postprandial lipid metabolism. Br J Nutr 79, 419424.
Roden, M, Perseghin, G, Petersen, KF, Hwang, JW, Cline, GW, Gerow, K, Rothman, DL & Shulman, GI (1996) The roles of insulin and glucagons in the regulation of hepatic glycogen synthesis and turnover in humans. J Clin Invest 97, 642648.
Sanders, TAB, de Grassi, T, Miller, GJ & Morrissey, JH (2000) Influence of fatty acid chain length and cis/trans isomerisation on postprandial lipaemia and factor VII in healthy subjects (postprandial lipids and factor VII). Atherosclerosis 149, 413420.
Storlien, LH, Baur, LA, Kriketos, AD, Pan, DA, Cooney, GJ, Jenkins, AB, Calvert, GD & Campbell, LV (1996) Dietary fats and insulin action. Diabetologia 39, 621631.
Storlien, LH, Kriketos, AD, Calvert, GD, Baur, LA & Jenkins, AB (1997) Fatty acids, triglycerides and syndromes of insulin resistance. Prostaglandins Leukot Essent Fatty Acids 57, 379385.
Tholstrup, T, Sandstrom, B, Bysted, A & Holmer, G (2001) Effect of 6 dietary fatty acids on the postprandial lipid profile, plasma fatty acids, lipoprotein lipase, and cholesterol ester transfer activities in healthy young men. Am J Clin Nutr 73, 198208.
Thomson, C, Rasmussen, O, Lousen, T, Holst, JJ, Fenselau, S, Schrezenmeir, J & Hermansen, K (1999) Differential effects of saturated and monounsaturated fatty acids on postprandial lipaemia and incretin responses in healthy subjects. Am J Clin Nutr 69, 11351143.
Vessby, B, Uusitupa, M & Hermansen, K (2001) Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU study. Diabetologia 44, 312319.
Weintraub, MS, Zechner, R, Brown, A, Eisenberg, S & Breslow, JL (1988) Dietary polyunsaturated fats of the W-6 and W-3 series reduce postprandial lipoprotein levels. Chronic and acute effects of fat saturation on postprandial lipoprotein metabolism. J Clin Invest 82, 18841893.
Welch, IM, Bruce, C, Hill, SE & Read, NW (1987) Duodenal and ileal lipid suppresses postprandial blood glucose and insulin responses in man: possible implications for the dietary management of diabetes mellitus. Clin Sci 72, 209216.
Williams, CM (1997) Postprandial lipid metabolism: effects of dietary fatty acids. Proc Nutr Soc 56, 679692.
Wolever, TMS (2004) Effect of blood sampling schedule and method of calculating the area under the curve on validity and precision of glycaemic index values. Br J Nutr 91, 295300.
Zampelas, A, Murphy, M, Morgan, LM & Williams, CM (1994) Postprandial lipoprotein lipase, insulin and gastric inhibitory polypeptide responses to test meals of different fatty acid composition: Comparison of saturated, n-6 and n-3 polyunsaturated fatty acids. Eur J Clin Nutr 48, 849858.

Keywords

Related content

Powered by UNSILO

Acute effects of meal fatty acids on postprandial NEFA, glucose and apo E response: implications for insulin sensitivity and lipoprotein regulation?

  • Kim G. Jackson (a1), Emma J. Wolstencroft (a1), Paul A. Bateman (a1), Parveen Yaqoob (a1) and Christine M. Williams (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.