Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-v9xhf Total loading time: 0.372 Render date: 2022-05-22T02:15:04.952Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

No effects of sweet taste exposure at breakfast for 3 weeks on pleasantness, desire for, sweetness or intake of other sweet foods: a randomised controlled trial

Published online by Cambridge University Press:  25 June 2021

Katherine M. Appleton*
Affiliation:
Department of Psychology, Faculty of Science and Technology, Bournemouth University, Poole, UK
Jessica Rajska
Affiliation:
Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, UK
Sarah M. Warwick
Affiliation:
Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, UK
Peter J. Rogers
Affiliation:
Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol, UK
*
*Corresponding author: Katherine Appleton, email k.appleton@bournemouth.ac.uk

Abstract

This work investigated the effects of repeated sweet taste exposure at breakfast on perceptions and intakes of other sweet foods, while also examining the effects due to duration of exposure (1/3 weeks), test context (breakfast/lunch) and associations between taste perceptions and intakes. Using a randomised controlled parallel-group design, participants (n 54, 18 male, mean age: 23·9 (sd 5·8) years, mean BMI: 23·6 (sd 3·5) kg/m2) were randomised to consume either a sweet breakfast (cereal with sucralose) (n 27) or an equienergetic non-sweet breakfast (plain cereal) (n 27) for 3 weeks. On days 0 (baseline), 7 and 21, pleasantness, desire to eat and sweetness were rated for other sweet and non-sweet foods and sweet food consumption was assessed in an ad libitum meal at breakfast and lunch. Using intention-to-treat analyses, no statistically significant effects of exposure were found at breakfast (largest F2,104 = 1·84, P = 0·17, ηp2 = 0·03) or lunch (largest F1,52 = 1·22, P = 0·27, ηp2 = 0·02), and using Bayesian analyses, the evidence for an absence of effect in all rating measures was strong to very strong (smallest BF01 = 297·97 (BF01error = 2·68 %)). Associations between ratings of pleasantness, desire to eat and intake were found (smallest r = 0·137, P < 0·01). Effects over time regardless of exposure were also found: sugars and percentage energy consumed from sweet foods increased throughout the study (smallest (F2,104 = 4·54, P = 0·01, ηp2 = 0·08). These findings demonstrate no effects of sweet taste exposure at breakfast for 1 or 3 weeks on pleasantness, desire for, sweetness or intakes of other sweet foods in either the same (breakfast) or in a different (lunch) meal context.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

World Health Organization (2014) Website. https://www.who.int/en/news-room/fact-sheets/detail/healthy-diet (accessed August 2019).Google Scholar
Pan American Health Organization (2016) Pan American Health Organization Nutrient Profile Model. Washington, DC: Pan American Health Organization.Google Scholar
Appleton, KM, Tuorila, H, Bertenshaw, EJ, et al. (2018) Sweet taste exposure and the subsequent acceptance and preference for sweet taste in the diet: systematic review of the published literature. Am J Clin Nutr 107, 405419.CrossRefGoogle ScholarPubMed
Griffioen-Roose, S, Hogenkamp, PS, Mars, M, et al. (2012) Taste of a 24-h diet and its effect on subsequent food preferences and satiety. Appetite 59, 18.10.1016/j.appet.2012.03.013CrossRefGoogle ScholarPubMed
Hetherington, MM, Bell, A & Rolls, BJ (2000) Effects of repeat consumption on pleasantness, preference and intake. Br Food J 102, 507521.CrossRefGoogle Scholar
Liem, DG & de Graaf, C (2004) Sweet and sour preferences in young children and adults: role of repeated exposure. Physiol Behav 83, 421429.10.1016/j.physbeh.2004.08.028CrossRefGoogle ScholarPubMed
Mattes, R (1990) Effects of aspartame and sucrose on hunger and energy intake in humans. Physiol Behav 47, 10371044.CrossRefGoogle ScholarPubMed
Ogden, J, Cordey, P, Cutler, L, et al. (2013) Parental restriction and children’s diets. The chocolate coin and Easter egg experiments. Appetite 61, 3644.CrossRefGoogle ScholarPubMed
Sullivan, SA & Birch, LL (1990) Pass the sugar, pass the salt: experience dictates preference. Dev Psycholol 26, 546555.CrossRefGoogle Scholar
Fantino, M, Fantino, A, Matray, M, et al. (2018) Beverages containing low energy sweeteners do not differ from water in their effects on appetite, energy intake and food choices in healthy, non-obese French adults. Appetite 125, 557565.CrossRefGoogle Scholar
Carroll, HA, Chen, Y-C, Templeman, IS, et al. (2020) Effect of plain versus sugar-sweetened breakfast on energy balance and metabolic health: a randomized controlled trial. Obesity 28, 740748.10.1002/oby.22757CrossRefGoogle Scholar
Appleton, KM (2021) Repeated exposure to and subsequent consumption of sweet taste: Reanalysis of test meal intake data following the repeated consumption of sweet v. non-sweet beverages. Physiol Behavior 229, 113221.10.1016/j.physbeh.2020.113221CrossRefGoogle Scholar
Flint, A, Raben, A, Blundell, JE, et al. (2000) Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord 24, 3848.CrossRefGoogle ScholarPubMed
Rogers, PJ & Hardman, CA (2015) Food reward. What it is and how to measure it. Appetite 90, 115.10.1016/j.appet.2015.02.032CrossRefGoogle Scholar
Trumbo, PR, Appleton, KM, de Graaf, K, et al. (2021) Perspective: measuring sweetness in foods, beverages, and diets: toward understanding the role of sweetness in health. Adv Nutr 12, 343354.CrossRefGoogle ScholarPubMed
van Langeveld, AWB, Teo, PS, de Vries, JHM, et al. (2018) Dietary taste patterns by sex and weight status in the Netherlands. Br J Nutr 119, 11951206.10.1017/S0007114518000715CrossRefGoogle ScholarPubMed
Howell, DC (1997) Statistical Methods for Psychology, 4th ed. London: Duxbury Press.Google Scholar
Hetherington, MM, Pirie, LM & Nabb, S (2002) Stimulus satiation: effects of repeated exposure to foods on pleasantness and intake. Appetite 38, 1928.10.1006/appe.2001.0442CrossRefGoogle ScholarPubMed
Hoek, AC, Elzerman, JE, Hageman, R, et al. (2013) Are meat substitutes liked better over time? A repeated in-home use test with meat substitutes or meat in meals. Food Qual Pref 28, 253263.10.1016/j.foodqual.2012.07.002CrossRefGoogle Scholar
Song, R-R, Chung, S-J, Cho, SA, et al. (2019) Learning to know what you like: a case study of repeated exposure to ethnic flavors. Food Qual Pref 71, 452462.10.1016/j.foodqual.2018.08.021CrossRefGoogle Scholar
Alwattar, A, Thyfault, J & Leidy, H (2015) The effect of breakfast type and frequency of consumption on glycemic response in overweight/obese late adolescent girls. Eur J Clin Nutr 69, 885890.10.1038/ejcn.2015.12CrossRefGoogle ScholarPubMed
Thomas, EA, Higgins, J, Bessesen, DH, et al. (2015) Usual breakfast eating habits affect the response to breakfast skipping in overweight women. Obesity 23, 750759.10.1002/oby.21049CrossRefGoogle ScholarPubMed
Magnuson, BA, Roberts, A & Nestmann, ER (2017) Critical review of the current literature on the safety of sucralose. Food Chem Toxicol 106, 324355.10.1016/j.fct.2017.05.047CrossRefGoogle ScholarPubMed
Kremer, S, Shimojo, R, Holthuysen, N, et al. (2013) Consumer acceptance of salt-reduced ‘soy sauce’ bread over repeated in home consumption. Food Qual Pref 28, 484491.10.1016/j.foodqual.2012.12.001CrossRefGoogle Scholar
Li, B, Hayes, JE & Ziegler, GR (2014) Interpreting consumer preferences: physicohedonic and psychohedonic models yield different information in a coffee-flavored dairy beverage. Food Qual Pref 36, 2732.CrossRefGoogle Scholar
Li, P & Stuart, E (2019) Best (but oft-forgotten) practices: missing data methods in randomized controlled nutrition trials. Am J Clin Nutr 109, 504508.CrossRefGoogle ScholarPubMed
Appleton, KM, Rogers, PJ & Blundell, JE (2004) Effects of a sweet and a nonsweet lunch on short-term appetite: differences in female high and low consumers of sweet/low energy beverages. J Hum Nutr Diet 17, 425434.10.1111/j.1365-277X.2004.00548.xCrossRefGoogle Scholar
de Graaf, C (1993) The validity of appetite ratings. Appetite 21, 156160.CrossRefGoogle ScholarPubMed
De Graaf, C, Schreurs, A & Blauw, YH (1993) Short-term effects of different amounts of sweet and non-sweet carbohydrates on satiety and energy intake. Physiol Behav 54, 833843.10.1016/0031-9384(93)90290-VCrossRefGoogle Scholar
Dalenberg, JR, Nanetti, L, Renken, RJ, et al. (2014) Dealing with consumer differences in liking during repeated exposure to food; Typical dynamics in rating behavior. PLoS ONE 9, e93350.CrossRefGoogle ScholarPubMed
Weijzen, PLG, Zandstra, EH, Alfieri, C, et al. (2008) Effects of complexity and intensity on sensory specific satiety and food acceptance after repeated consumption. Food Qual Pref 19, 349359.10.1016/j.foodqual.2007.11.003CrossRefGoogle Scholar
Zandstra, EH, Weegels, MF, van Spronsen, AA, et al. (2004) Scoring or boring? Predicting boredom through repeated in-home consumption. Food Qual Pref 15, 549557.CrossRefGoogle Scholar
Rolls, BJ (1986) Sensory-specific satiety. Nutr Rev 44, 93101.10.1111/j.1753-4887.1986.tb07593.xCrossRefGoogle ScholarPubMed
Griffioen-Roose, S, Finlayson, G, Mars, M, et al. (2010) Measuring food reward and the transfer effect of sensory specific satiety. Appetite 55, 648655.10.1016/j.appet.2010.09.018CrossRefGoogle ScholarPubMed
Griffioen-Roose, S, Mars, M, Finlayson, G, et al. (2011) The effect of within-meal protein content and taste on subsequent food choice and satiety. Br J Nutr 106, 779788.10.1017/S0007114511001012CrossRefGoogle ScholarPubMed
Frank, GK, Oberndorfer, TA, Simmons, AN, et al. (2008) Sucrose activates human taste pathways differently from artificial sweetener. Neuroimage 39, 15591569.10.1016/j.neuroimage.2007.10.061CrossRefGoogle ScholarPubMed
Low, YQ, Lacy, K & Keast, R (2014) The role of sweet taste in satiation and satiety. Nutrients 6, 34313450.10.3390/nu6093431CrossRefGoogle ScholarPubMed
Low, JY, McBride, RL, Lacy, KE, et al. (2017) Psychophysical evaluation of sweetness functions across multiple sweeteners. Chem Senses 42, 111120.CrossRefGoogle ScholarPubMed
Coolican, H (2019) Research Methods and Statistics in Psychology, 7th ed. Abingdon: Routledge.Google Scholar
Supplementary material: File

Appleton et al. supplementary material

Appleton et al. supplementary material

Download Appleton et al. supplementary material(File)
File 41 KB

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

No effects of sweet taste exposure at breakfast for 3 weeks on pleasantness, desire for, sweetness or intake of other sweet foods: a randomised controlled trial
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

No effects of sweet taste exposure at breakfast for 3 weeks on pleasantness, desire for, sweetness or intake of other sweet foods: a randomised controlled trial
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

No effects of sweet taste exposure at breakfast for 3 weeks on pleasantness, desire for, sweetness or intake of other sweet foods: a randomised controlled trial
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *