Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-qn7h5 Total loading time: 0.4 Render date: 2022-10-04T13:43:56.969Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Long-chain PUFA ameliorate enterotoxigenic Escherichia coli-induced intestinal inflammation and cell injury by modulating pyroptosis and necroptosis signaling pathways in porcine intestinal epithelial cells

Published online by Cambridge University Press:  17 December 2021

Kan Xiao
Affiliation:
Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, People’s Republic of China
Yang Yang
Affiliation:
Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, People’s Republic of China
Yang Zhang
Affiliation:
Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, People’s Republic of China
Qingqing Lv
Affiliation:
Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, People’s Republic of China
Feifei Huang
Affiliation:
Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, People’s Republic of China
Dan Wang
Affiliation:
Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, People’s Republic of China
Jiangchao Zhao
Affiliation:
Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
Yulan Liu*
Affiliation:
Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, People’s Republic of China
*
*Corresponding author: Dr Y Liu, email yulanflower@126.com

Abstract

This study was aimed to investigate whether EPA and arachidonic acid (ARA), the representative n-3 or n-6 PUFA, could alleviate enterotoxigenic Escherichia coli (ETEC) K88-induced inflammation and injury of intestinal porcine epithelial cells 1 (IPEC-1) by modulating pyroptosis and necroptosis signalling pathways. IPEC-1 cells were cultured with or without EPA or ARA in the presence or absence of ETEC K88. EPA and ARA reduced ETEC K88 adhesion and endotoxin content in the supernatant. EPA and ARA increased transepithelial electrical resistance, decreased permeability of fluorescein isothiocyanate-labelled dextran, increased membrane protein expression of occludin, ZO-1 and claudin-1 and relieved disturbed distribution of these proteins. EPA and ARA also reduced cell necrosis ratio. EPA or ARA reduced mRNA and concentration of TNF-α, IL-6 and IL-8 and decreased mRNA abundances of intestinal toll-like receptors 4 and its downstream signals. Moreover, EPA and ARA downregulated mRNA expression of nod-like receptor protein 3 (NLRP3), caspase 1 and IL-18 and inhibited protein expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), gasdermin D and caspase-1. Finally, EPA and ARA reduced mRNA expression of fas-associated death domain protein, caspase 8, receptor-interacting protein kinase (RIP) 1, mixed lineage kinase-like protein (MLKL), phosphoglycerate mutase 5 (PGAM5), motility-related protein 1 (Drp1) and high mobility protein 1 (HMGB1) and inhibited protein expression of phosphorylated-RIP1, p-RIP3, p-MLKL and HMGB1. These data demonstrate that EPA and ARA prevent ETEC K88-induced cell inflammation and injury, which is partly through inhibiting pyroptosis and necroptosis signalling pathways.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Kan Xiao and Yang Yang are co-first authors.

References

Dubreuil, JD, Isaacson, RE & Schifferli, DM (2016) Animal enterotoxigenic Escherichia coli . EcoSal Plus 7, 147.CrossRefGoogle ScholarPubMed
McLamb, BL, Gibson, AJ, Overman, EL, et al. (2013) Early weaning stress in pigs impairs innate mucosal immune responses to enterotoxigenic E. coli challenge and exacerbates intestinal injury and clinical disease. PLoS One 8, e59838.CrossRefGoogle ScholarPubMed
Sheikh, A, Tumala, B, Vickers, TJ, et al. (2020) CEACAMs serve as toxin-stimulated receptors for enterotoxigenic Escherichia coli . Proc Natl Acad Sci USA 117, 2905529062.CrossRefGoogle ScholarPubMed
León, AJ, Garrote, JA & Arranz, E (2006) Cytokines in the pathogenesis of inflammatory bowel diseases. Med Clin 127, 145152.Google Scholar
Kono, H & Rock, KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8, 279289.CrossRefGoogle ScholarPubMed
López-Pedrosa, JM, Ramirez, M, Torres, MI, et al. (1999) Dietary phospholipids rich in long-chain polyunsaturated fatty acids improves the repair of small intestine in previously malnourished piglets. J Nutr 129, 11491155.CrossRefGoogle Scholar
Zhu, H, Wang, H, Wang, S, et al. (2018) Flaxseed oil attenuates intestinal damage and inflammation by regulating necroptosis and TLR4/NOD signaling pathways following lipopolysaccharide challenge in a piglet model. Mol Nutr Food Res 62, e1700814.CrossRefGoogle Scholar
Liu, Y, Chen, F, Odle, J, et al. (2012) Fish oil enhances intestinal integrity and inhibits TLR4 and NOD2 signaling pathways in weaned pigs after LPS challenge. J Nutr 142, 20172024.CrossRefGoogle ScholarPubMed
Xiao, K, Liu, C, Qin, Q, et al. (2020) EPA and DHA attenuate deoxynivalenol-induced intestinal porcine epithelial cell injury and protect barrier function integrity by inhibiting necroptosis signaling pathway. FASEB J 34, 24832496.CrossRefGoogle ScholarPubMed
Flock, MR, Harris, WS & Kris-Etherton, PM (2013) Long-chain n-3 fatty acids: time to establish a dietary reference intake. Nutr Rev 71, 692707.CrossRefGoogle ScholarPubMed
Ruthig, DJ & Meckling-Gill, KA (1999) Both (n-3) and (n-6) fatty acids stimulate wound healing in the rat intestinal epithelial cell line IEC-6. J Nutr 129, 17911798.CrossRefGoogle ScholarPubMed
Ruthig, DJ & Meckling-Gill, KA (2002) n-3 and n-6 Fatty acids stimulate restitution by independent mechanisms in the IEC-6 model of intestinal wound healing. J Nutr Biochem 13, 2735.CrossRefGoogle ScholarPubMed
Jacobi, SK, Moeser, AJ, Corl, BA, et al. (2012) Dietary long-chain PUFA enhance acute repair of ischemic injured intestine of suckling pigs. J Nutr 142, 12661271.CrossRefGoogle ScholarPubMed
Günther, C, Neumann, H, Neurath, MF, et al. (2013) Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut 62, 10621071.CrossRefGoogle ScholarPubMed
Chen, X, He, WT, Hu, L, et al. (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 26, 10071020.CrossRefGoogle ScholarPubMed
Patankar, JV & Becker, C (2020) Cell death in the gut epithelium and implications for chronic inflammation. Nat Rev Gastroenterol Hepatol 17, 543556.CrossRefGoogle ScholarPubMed
Ahn, D & Prince, A (2017) Participation of necroptosis in the host response to acute bacterial pneumonia. J Innate Immun 9, 262270.CrossRefGoogle ScholarPubMed
Shi, J, Gao, W & Shao, F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42, 245254.CrossRefGoogle ScholarPubMed
Pierdomenico, M, Negroni, A, Stronati, L, et al. (2014) Necroptosis is active in children with inflammatory bowel disease and contributes to heighten intestinal inflammation. Am J Gastroenterol 109, 279287.CrossRefGoogle ScholarPubMed
Günther, C, Martini, E, Wittkopf, N, et al. (2011) Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477, 335339.CrossRefGoogle ScholarPubMed
Chen, X, Liu, G, Yuan, Y, et al. (2019) NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis 10, 906918.CrossRefGoogle ScholarPubMed
Zeng, C, Duan, F, Hu, J, et al. (2020) NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non- ischemic dilated cardiomyopathy. Redox Biol 34, 101523.CrossRefGoogle Scholar
Willemsen, LE, Koetsier, MA, Balvers, M, et al. (2008) Polyunsaturated fatty acids support epithelial barrier integrity and reduce IL-4 mediated permeability in vitro . Eur J Nutr 47, 183191.CrossRefGoogle ScholarPubMed
Devriendt, B, Stuyven, E, Verdonck, F, et al. (2010) Enterotoxigenic Escherichia coli (K88) induce proinflammatory responses in porcine intestinal epithelial cells. Dev Comp Immunol 34, 11751182.CrossRefGoogle ScholarPubMed
Roselli, M, Finamore, A, Britti, MS, et al. (2007) The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage. J Nutr 137, 27092716.CrossRefGoogle ScholarPubMed
Matsumoto, H, Miyagawa, M, Takahashi, S, et al. (2020) Improvement of the enterotoxigenic Escherichia coli infection model for post-weaning diarrhea by controlling for bacterial adhesion, pig breed and MUC4 genotype. Vet Sci 7, 106.CrossRefGoogle ScholarPubMed
Calder, PC (2011) Fatty acids and inflammation: the cutting edge between food and pharma. Eur J Pharmacol 668, S50S58.CrossRefGoogle ScholarPubMed
Liu, YL (2015) Fatty acids, inflammation and intestinal health in pigs. J Anim Sci Biotechnol 6, 4150.CrossRefGoogle ScholarPubMed
Chen, J, Li, Y, Tang, Z, et al. (2019) Regulatory functions of fatty acids with different chain lengths on the intestinal health in pigs and relative signaling pathways. Curr Protein Pept Sci 20, 674682.CrossRefGoogle ScholarPubMed
Mani, V, Hollis, JH & Gabler, NK (2013) Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia. Nutr Metab 10, 6.CrossRefGoogle ScholarPubMed
Li, Q, Zhang, Q, Wang, M, et al. (2008) n-3 Polyunsaturated fatty acids prevent disruption of epithelial barrier function induced by proinflammatory cytokines. Mol Immunol 45, 13561365.CrossRefGoogle ScholarPubMed
Xiao, G, Tang, L, Yuan, F, et al. (2013) Eicosapentaenoic acid enhances heat stress-impaired intestinal epithelial barrier function in Caco-2 cells. PLoS One 8, e73571.CrossRefGoogle ScholarPubMed
Kishida, E, Tajiri, M & Masuzawa, Y (2006) Docosahexaenoic acid enrichment can reduce L929 cell necrosis induced by tumor necrosis factor. Biochim Biophys Acta 1761, 454462.CrossRefGoogle ScholarPubMed
Sabroe, I, Parker, LC, Dower, SK, et al. (2008) The role of TLR activation in inflammation. J Pathol 214, 126135.CrossRefGoogle ScholarPubMed
Wijendran, V, Brenna, JT, Wang, DH, et al. (2015) Long-chain polyunsaturated fatty acids attenuate the IL-1β-induced proinflammatory response in human fetal intestinal epithelial cells. Pediatr Res 78, 626633.CrossRefGoogle ScholarPubMed
Liu, X, Zhang, Z, Ruan, J, et al. (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153158.CrossRefGoogle ScholarPubMed
Liu, Z, Zaki, MH, Vogel, P, et al. (2015) Role of inflammasomes in host defense against Citrobacter rodentium infection. J Biol Chem 287, 1695516964.CrossRefGoogle Scholar
Shi, J, Zhao, Y, Wang, K, et al. (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660665.CrossRefGoogle ScholarPubMed
Mandal, P, Feng, Y, Lyons, JD, et al. (2018) Caspase-8 collaborates with caspase-11 to drive tissue damage and execution of endotoxic shock. Immunity 49, 4255.CrossRefGoogle ScholarPubMed
Shen, L, Yang, Y, Ou, T, et al. (2017) Dietary PUFAs attenuate NLRP3 inflammasome activation via enhancing macrophage autophagy. J Lipid Res 58, 18081821.CrossRefGoogle ScholarPubMed
Holler, N, Zaru, R, Micheau, O, et al. (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1, 489495.CrossRefGoogle ScholarPubMed
Vanlangenakker, N, Vanden Berghe, T & Vandenabeele, P (2012) Many stimuli pull the necrotic trigger, an overview. Cell Death Differ 19, 7586.CrossRefGoogle ScholarPubMed
Hildebrand, JM, Tanzer, MC, Lucet, IS, et al. (2014) Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci USA 111, 1507215077.CrossRefGoogle ScholarPubMed
Silke, J, Rickard, JA & Gerlic, M (2015) The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol 16, 689697.CrossRefGoogle ScholarPubMed
Wang, Z, Jiang, H, Chen, S, et al. (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148, 228243.CrossRefGoogle ScholarPubMed
Wang, H, Sun, L, Su, L, et al. (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54, 133146.CrossRefGoogle ScholarPubMed
Welz, PS, Wullaert, A, Vlantis, K, et al. (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477, 330334.CrossRefGoogle ScholarPubMed
Huang, N, Wang, M, Peng, J, et al. (2021) Role of arachidonic acid-derived eicosanoids in intestinal innate immunity. Crit Rev Food Sci 61, 23992410.CrossRefGoogle ScholarPubMed
Supplementary material: File

Xiao et al. supplementary material

Xiao et al. supplementary material

Download Xiao et al. supplementary material(File)
File 6 MB
1
Cited by

Linked content

Please note a has been issued for this article.

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Long-chain PUFA ameliorate enterotoxigenic Escherichia coli-induced intestinal inflammation and cell injury by modulating pyroptosis and necroptosis signaling pathways in porcine intestinal epithelial cells
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Long-chain PUFA ameliorate enterotoxigenic Escherichia coli-induced intestinal inflammation and cell injury by modulating pyroptosis and necroptosis signaling pathways in porcine intestinal epithelial cells
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Long-chain PUFA ameliorate enterotoxigenic Escherichia coli-induced intestinal inflammation and cell injury by modulating pyroptosis and necroptosis signaling pathways in porcine intestinal epithelial cells
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *